scholarly journals Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov.

2005 ◽  
Vol 55 (5) ◽  
pp. 2085-2091 ◽  
Author(s):  
Jack S.-C. Liou ◽  
David L. Balkwill ◽  
Gwendolyn R. Drake ◽  
Ralph S. Tanner

A novel solvent-producing, anaerobic clostridium, strain P7T, was isolated from sediment from an agricultural settling lagoon after enrichment with CO as the substrate. The metabolism of this Gram-positive, motile, spore-forming rod was primarily acetogenic. Acetate, ethanol, butyrate and butanol were the end-products of metabolism. Strain P7T grew on CO, H2/CO2, glucose, galactose, fructose, xylose, mannose, cellobiose, trehalose, cellulose, starch, pectin, citrate, glycerol, ethanol, propanol, 2-propanol, butanol, glutamate, aspartate, alanine, histidine, asparagine, serine, betaine, choline and syringate as sole substrates. Growth was not supported by methanol, formate, d-arabinose, fucose, lactose, melibiose, amygdalin, gluconate, lactate, malate, arginine, glutamine or vanillate. Nitrate reduction, production of indole, gelatin hydrolysis and aesculin hydrolysis were not observed. Analysis of the 16S rRNA gene sequence of the isolate showed that it was closely related to Clostridium scatologenes ATCC 25775T (99·7 % sequence similarity) and clostridial strain SL1T (99·8 % sequence similarity). Strain SL1 had been classified as a strain of C. scatologenes. However, DNA–DNA reassociation analysis showed that both strain P7T and strain SL1 represented novel clostridial species. It is proposed that strain P7T (=ATCC BAA-624T=DSM 15243T) be classified as the type strain of Clostridium carboxidivorans sp. nov. and that strain SL1T (=ATCC BAA-623T=DSM 12750T) be reclassified as the type strain of Clostridium drakei sp. nov.

2005 ◽  
Vol 55 (2) ◽  
pp. 941-947 ◽  
Author(s):  
Grigorii I. Karavaiko ◽  
Tat'yana I. Bogdanova ◽  
Tat'yana P. Tourova ◽  
Tamara F. Kondrat'eva ◽  
Iraida A. Tsaplina ◽  
...  

Comparative analysis of 16S rRNA gene sequences, DNA–DNA hybridization data and phenotypic properties revealed that ‘Sulfobacillus thermosulfidooxidans subsp. thermotolerans’ strain K1 is not a member of the genus Sulfobacillus. Phylogenetically, strain K1 is closely related to unclassified strains of the genus Alicyclobacillus: the 16S rRNA gene sequence of strain K1 is similar to that of Alicyclobacillus sp. AGC-2 (99·6 %), Alicyclobacillus sp. 5C (98·9 %) and Alicyclobacillus sp. CLG (98·6 %) and bacterium GSM (99·1 %). The 16S rRNA gene sequence similarity values for strain K1 and species of the genus Alicyclobacillus with validly published names were in the range 92·1–94·6 %, and for S. thermosulfidooxidans VKM B-1269T the value was 87·7 %. Sulfobacillus disulfidooxidans SD-11T was also phylogenetically related to strain K1 (92·6 % sequence similarity) and thus belonged to the genus Alicyclobacillus. Chemotaxonomic data, such as the major cell-membrane lipid components of strains K1 and SD-11T (ω-alicyclic fatty acids) and the major isoprenoid quinone (menaquinone MK-7) of strain K1, supported the affiliation of strains K1 and SD-11T to the genus Alicyclobacillus. Physiological and molecular biological tests allowed genotypic and phenotypic differentiation of strains K1 and SD-11T from the nine Alicyclobacillus species with validly published names. The G+C content of the DNA of strain K1 was 48·7±0·6 mol%; that of strain SD-11T was 53±1 mol%. DNA–DNA reassociation studies showed low relatedness (22 %) between strains K1 and SD-11T, and even lower relatedness (3–5 %) between these strains and Alicyclobacillus acidocaldarius subsp. acidocaldarius ATCC 27009T, DSM 446T. DNA reassociation of strains K1 and SD-11T with Alicyclobacillus cycloheptanicus DSM 4006T gave values of 15 and 21, respectively. Based on the phenotypic and phylogenetic characteristics of strains K1 and SD-11T, Alicyclobacillus tolerans sp. nov. (type strain, K1T=VKM B-2304T=DSM 16297T) and Alicyclobacillus disulfidooxidans comb. nov. (type strain, SD-11T=ATCC 51911T=DSM 12064T) are proposed.


2011 ◽  
Vol 61 (9) ◽  
pp. 2167-2172 ◽  
Author(s):  
Qi-Yong Tang ◽  
Na Yang ◽  
Jian Wang ◽  
Yu-Qing Xie ◽  
Biao Ren ◽  
...  

A Gram-stain-positive, endospore-forming, rod-shaped bacterium, designated XJ259T, was isolated from a cold spring sample from Xinjiang Uyghur Autonomous Region, China. The isolate grew optimally at 20–30 °C and pH 7.3–7.8. Comparative analysis of the 16S rRNA gene sequence showed that isolate XJ259T belonged phylogenetically to the genus Paenibacillus, and was most closely related to Paenibacillus xinjiangensis B538T (with 96.6 % sequence similarity), Paenibacillus glycanilyticus DS-1T (96.3 %) and Paenibacillus castaneae Ch-32T (96.1 %), sharing less than 96.0 % sequence similarity with all other members of the genus Paenibacillus. Chemotaxonomic analysis revealing menaquinone-7 (MK-7) as the major isoprenoid quinone, diphosphatidylglycerol, phosphatidylethanolamine and two unknown phosphoglycolipids as the major cellular polar lipids, a DNA G+C content of 47.0 mol%, and anteiso-C15 : 0 and C16 : 0 as the major fatty acids supported affiliation of the new isolate to the genus Paenibacillus. Based on these data, isolate XJ259T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus algorifonticola sp. nov. is proposed. The type strain is XJ259T ( = CGMCC 1.10223T  = JCM 16598T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1715-1719 ◽  
Author(s):  
Sang-Hoon Baek ◽  
Yingshun Cui ◽  
Sun-Chang Kim ◽  
Chang-Hao Cui ◽  
Chengri Yin ◽  
...  

A Gram-reaction-positive, rod-shaped, spore-forming bacterium, designated Gsoil 1105T, was isolated from soil of a ginseng field in Pocheon Province in South Korea and characterized in order to determine its taxonomic position. Comparative analysis of the 16S rRNA gene sequence showed that the isolate belongs to the order Bacillales, showing the highest level of sequence similarity with respect to Tumebacillus permanentifrigoris Eur1 9.5T (94.6 %). The phylogenetic distances from other described species with validly published names within the order Bacillales were greater than 9.0 %. Strain Gsoil 1105T had a genomic DNA G+C content of 55.6 mol% and menaquinone 7 (MK-7) as the major respiratory quinone. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 1105T represents a novel species of the genus Tumebacillus, for which the name Tumebacillus ginsengisoli sp. nov. is proposed. The type strain is Gsoil 1105T ( = KCTC 13942T  = DSM 18389T).


2007 ◽  
Vol 57 (12) ◽  
pp. 2836-2839 ◽  
Author(s):  
Hidetoshi Morita ◽  
Chiharu Shiratori ◽  
Masaru Murakami ◽  
Hideto Takami ◽  
Yukio Kato ◽  
...  

Two strains, KBL13T and GBL13, were isolated as one of intestinal lactobacilli from the faecal specimens from different thoroughbreds of the same farm where they were born in Hokkaido, Japan. They were Gram-positive, facultatively anaerobic, catalase-negative, non-spore-forming and non-motile rods. KBL13T and GBL13 homofermentatively metabolize glucose, and produce lactate as the sole final product from glucose. The 16S rRNA gene sequence, DNA–DNA hybridization, DNA G+C content and biochemical characterization indicated that these two strains, KBL13T and GBL13, belong to the same species. In the representative strain, KBL13T, the DNA G+C content was 34.3 mol%. Lactobacillus salivarius JCM 1231T (=ATCC 11741T; AF089108) is the type strain most closely related to the strain KBL13T as shown in the phylogenetic tree, and the 16S rRNA gene sequence identity showed 96.0 % (1425/1484 bp). Comparative 16S rRNA gene sequence analysis of this strain indicated that the two isolated strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives, L. salivarius, Lactobacillus aviarius, Lactobacillus saerimneri and Lactobacillus acidipiscis. DNA–DNA reassociation experiments with L. salivarius and L. aviarius confirmed that KBL13T represents a novel species, for which the name Lactobacillus hayakitensis sp. nov. is proposed. The type strain is KBL13T (=JCM 14209T=DSM 18933T).


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 1982-1986 ◽  
Author(s):  
Shigeto Otsuka ◽  
Hiroyuki Ueda ◽  
Taku Suenaga ◽  
Yoshihito Uchino ◽  
Moriyuki Hamada ◽  
...  

The taxonomic properties of strain DC2a-G7T, a Gram-negative, ovoid to rod-shaped, gellan gum-lysing bacterium, were examined. The 16S rRNA gene sequence similarity showed that DC2a-G7T is a member of the phylum Verrucomicrobia and the closest type strain of a species with a validly published name is Verrucomicrobium spinosum DSM 4136T, with a sequence similarity of 91.2 %. In addition to this similarity value lower than 95 %, the absence of prostheca, the orangey-red colony colour and the compositions of the major menaquinones and polar lipids also supported the differentiation of this bacterium from the genus Verrucomicrobium . Here, we propose the name Roseimicrobium gellanilyticum gen. nov., sp. nov. for the isolate. The type strain of Roseimicrobium gellanilyticum is DC2a-G7T ( = NBRC 108606T = DSM 25532T).


2007 ◽  
Vol 57 (3) ◽  
pp. 538-541 ◽  
Author(s):  
Byung-Yong Kim ◽  
Hang-Yeon Weon ◽  
Seung-Hee Yoo ◽  
Seung-Beom Hong ◽  
Soon-Wo Kwon ◽  
...  

An orange-coloured bacterial strain, designated R2A15-11T, was isolated from greenhouse soil. The strain was found to be strictly aerobic, Gram-negative, non-spore-forming and non-flagellated. The cells were short rods (0.7–0.9×1.0–1.5 μm) and produced flexirubin. Growth of the strain was observed at 10–35 °C, pH 5.0–8.0 and 0–3 % (w/v) NaCl. The predominant isoprenoid quinone was MK-7. The major fatty acids were iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH and summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1 ω7c). The genomic DNA G+C content was 45.0 mol%. Phylogenetic analysis of the 16S rRNA gene sequence of strain R2A15-11T revealed a clear affiliation with the phylum Bacteroidetes, and the highest levels of sequence similarity were found with respect to Terrimonas ferruginea ATCC 13524T (91.5 %), Terrimonas lutea DYT (90.2 %), Niastella yeongjuensis GR20-13T (89.9 %) and Niastella koreensis GR20-10T (89.7 %). On the basis of the polyphasic evidence from this study, strain R2A15-11T represents a novel genus and species, for which the name Niabella aurantiaca gen. nov., sp. nov. is proposed. The type strain of Niabella aurantiaca is R2A15-11T (=KACC 11698T=DSM 17617T).


Author(s):  
Sokhna Ndongo ◽  
Mossaab Maaloum ◽  
Magali Richez ◽  
Rachid Saile ◽  
Pierre-Edouard Fournier ◽  
...  

AbstractStrain SN6T is a non-motile and non-spore-forming gram-negative bacterium which was isolated from the stool sample of an Amazonian patient. The optimum growth was observed at 37 °C, pH 7, and 0–5 g/l of NaCl. Based on the 16S rRNA gene sequence similarity, the strain SN6T exhibited 97.5% identity with Vitreoscilla stercoraria strain ATCC_15218 (L06174), the phylogenetically closest species with standing in nomenclature. The predominant fatty acid was hexadecenoic acid (31%). The genomic DNA G + C content of the strain SN6T was 49.4 mol %. After analysis of taxonogenomic data, phenotypic and biochemical characteristics, we concluded that strain SN6T represents a new species of the genus Vitreoscilla for which the name Vitreoscilla massiliensis sp.nov is proposed. The type strain is SN6T (=CSUR P2036 = LN870312 = DSM 100958).


2005 ◽  
Vol 55 (2) ◽  
pp. 885-889 ◽  
Author(s):  
In-Gi Kim ◽  
Mi-Hwa Lee ◽  
Seo-Youn Jung ◽  
Jae Jun Song ◽  
Tae-Kwang Oh ◽  
...  

Three Gram-variable, rod-shaped bacterial strains, TF-16T, TF-19 and TF-80T, were isolated from a tidal flat of Daepo Beach (Yellow Sea) near Mokpo City, Korea, and their taxonomic positions were investigated by a polyphasic approach. These isolates grew optimally in the presence of 2 % NaCl and at 30 °C. Their peptidoglycan types were based on l-Lys–Gly. The predominant menaquinone detected in the three strains was MK-7. The three strains contained large amounts of the branched fatty acids iso-C17 : 0, anteiso-C13 : 0, iso-C13 : 0 and iso-C15 : 0. The DNA G+C contents of strains TF-16T, TF-19 and TF-80T were 48·6, 48·4 and 48·0 mol%, respectively. The three strains formed a coherent cluster with Exiguobacterium species in a phylogenetic tree based on 16S rRNA gene sequences. They showed closest phylogenetic affiliation to Exiguobacterium aurantiacum, with 16S rRNA gene sequence similarity values of 98·1–98·3 %. The three strains exhibited 16S rRNA gene sequence similarity values of 94·0–94·6 % to the type strains of other Exiguobacterium species. Levels of DNA–DNA relatedness indicated that strains TF-16T and TF-19 and strain TF-80T are members of two species that are separate from E. aurantiacum. On the basis of phenotypic, phylogenetic and genetic data, strains TF-16T and TF-19 and strain TF-80T represent two novel species in the genus Exiguobacterium; the names Exiguobacterium aestuarii sp. nov. (type strain TF-16T=KCTC 19035T=DSM 16306T; reference strain TF-19) and Exiguobacterium marinum sp. nov. (type strain TF-80T=KCTC 19036T=DSM 16307T) are proposed.


2011 ◽  
Vol 61 (8) ◽  
pp. 1954-1961 ◽  
Author(s):  
An Coorevits ◽  
Niall A. Logan ◽  
Anna E. Dinsdale ◽  
Gillian Halket ◽  
Patsy Scheldeman ◽  
...  

A polyphasic taxonomic study was performed on 22 thermotolerant, aerobic, endospore-forming bacteria from dairy environments. Seventeen isolates were retrieved from raw milk, one from a filter cloth and four from grass, straw or milking equipment. These latter four isolates (R-6546, R-7499, R-7764 and R-7440) were identified as Bacillus thermoamylovorans based on DNA–DNA hybridizations (values above 70 % with Bacillus thermoamylovorans LMG 18084T) but showed discrepancies in characteristics with the original species description, so an emended description of this species is given. According to 16S rRNA gene sequence analysis and DNA–DNA hybridization experiments, the remaining 18 isolates (R-6488T, R-28193, R-6491, R-6492, R-7336, R-33367, R-6486, R-6770, R-31288, R-28160, R-26358, R-7632, R-26955, R-26950, R-33520, R-6484, R-26954 and R-7165) represented one single species, most closely related to Bacillus thermoamylovorans (93.9 % 16S rRNA gene sequence similarity), for which the name Bacillus thermolactis is proposed. Cells were Gram-stain-positive, facultatively anaerobic, endospore-forming rods that grew optimally at 40–50 °C. The cell wall peptidoglycan type of strain R-6488T, the proposed type strain, was A1γ based on meso-diaminopimelic acid. Major fatty acids of the strains were C16 : 0 (28.0 %), iso-C16 : 0 (12.1 %) and iso-C15 : 0 (12.0 %). MK-7 was the predominant menaquinone, and major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and some unidentified phospholipids. DNA G+C content was 35.0 mol%. Phenotypic properties allowed discrimination from other thermotolerant species of the genus Bacillus and supported the description of the novel species Bacillus thermolactis, with strain R-6488T ( = LMG 25569T  = DSM 23332T) as the proposed type strain.


2021 ◽  
Author(s):  
Tomoyuki Konishi ◽  
Tomohiko Tamura ◽  
Toru Tobita ◽  
Saori Sakai ◽  
Namio Matsuda ◽  
...  

Abstract Gram-positive, rod-shaped, spore-forming, thermophilic, acidophilic bacterium, designated strain skT53T, was isolated from farm soil in Tokyo, Japan. The strain grew aerobically at 37–55°C (optimum 50°C) and pH 4.0–6.0 (optimum 5.0). Phylogenetic analysis of the 16S rRNA gene sequence showed that the isolate was most closely related to the type strain of Effusibacillus consociatus (94.3% similarity). The G + C content of the genomic DNA was 48.22 mol%. MK-7 was the predominant respiratory quinone. The major fatty acids were anteiso-C15:0, iso-C15:0, iso-C16:0 and C18:3ω6c. The results of phenotypic and chemotaxonomic, 16S rRNA gene sequence similarity, and whole genome analyses support strain skT53T as representing a novel species of Effusibacillus dendaii sp. nov. is proposed. The type strain is strain skT53T (= NBRC 114101T = TBRC 11241T).


Sign in / Sign up

Export Citation Format

Share Document