clostridium carboxidivorans
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 20)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiangfei Li ◽  
Rumeng Han ◽  
Teng Bao ◽  
Tolbert Osire ◽  
Xian Zhang ◽  
...  

Abstract Background Clostridium carboxidivorans P7 is capable of producing ethanol and butanol from inexpensive and non-food feedstock, such as syngas. Achieving improved ethanol and butanol production in the strain for industrial application depends on the energetics and biomass, especially ATP availability. Results This study found that exogenous addition of citrulline promoted accumulation of ATP, increased specific growth rate, and reduced the doubling time of C. carboxidivorans P7. In heterotrophic fermentation experiments, the addition of citrulline increased intracellular ATP by 3.39-fold, significantly enhancing the production of total alcohol (ethanol + butanol) by 20%. Moreover, in the syngas fermentation experiments, the addition of citrulline improved the level of intracellular ATP and the biomass by 80.5% and 31.6%, respectively, resulting in an 18.6% and 60.3% increase in ethanol and the alcohol/acid production ratio, respectively. Conclusions This is the first report that citrulline could promote the growth of C. carboxidivorans P7 and increase the level of intracellular ATP, which is of great significance for the use of C. carboxidivorans P7 to synthesize biofuels.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 199 ◽  
Author(s):  
Carolina Benevenuti ◽  
Marcelle Branco ◽  
Mariana do Nascimento-Correa ◽  
Alanna Botelho ◽  
Tatiana Ferreira ◽  
...  

Recycling residual industrial gases and residual biomass as substrates to biofuel production by fermentation is an important alternative to reduce organic wastes and greenhouse gases emission. Clostridium carboxidivorans can metabolize gaseous substrates as CO and CO2 to produce ethanol and higher alcohols through the Wood-Ljungdahl pathway. However, the syngas fermentation is limited by low mass transfer rates. In this work, a syngas fermentation was carried out in serum glass bottles adding different concentrations of Tween® 80 in ATCC® 2713 culture medium to improve gas-liquid mass transfer. We observed a 200% increase in ethanol production by adding 0.15% (v/v) of the surfactant in the culture medium and a 15% increase in biomass production by adding 0.3% (v/v) of the surfactant in the culture medium. The process was reproduced in stirred tank bioreactor with continuous syngas low flow, and a maximum ethanol productivity of 0.050 g/L.h was achieved.


2021 ◽  
Author(s):  
Xiangfei Li ◽  
Rumeng Han ◽  
Teng Bao ◽  
Tolbert Osire ◽  
Xian Zhang ◽  
...  

Abstract Background Clostridium carboxidivorans P7 is capable of producing ethanol and butanol from inexpensive and non-food feedstock such as syngas. Achieving improved ethanol and butanol production in the strain for industrial application depends on the energetics and biomass, especially ATP availability. Results This study found that exogenous addition of citrulline promoted accumulation of ATP, increased specific growth rate, and reduced the doubling time of C. carboxidivorans P7. In heterotrophic fermentation experiments, the addition of citrulline increased intracellular ATP by 3.39-fold, significantly enhancing the production of total alcohol (ethanol + butanol) by 20%. Moreover, in the syngas fermentation experiments, the addition of citrulline improved the level of intracellular ATP and the biomass by 80.5% and 31.6%, respectively, resulting in a 18.6% and 60.3%, increased in ethanol and the alcohol/acid production ratio, respectively. Conclusions This is the first report that citrulline could promote the growth of C. carboxidivorans P7 and increased the level of intracellular ATP, which is of great significance for the use of C. carboxidivorans P7 to synthesize biofuels.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anton Rückel ◽  
Jens Hannemann ◽  
Carolin Maierhofer ◽  
Alexander Fuchs ◽  
Dirk Weuster-Botz

Syngas fermentation processes with acetogenic bacteria like Clostridium carboxidivorans have been proven to be a promising approach for the conversion of CO-rich waste gases into short- and medium-chain alcohols. The challenge of synthesis gas impurities, on the other hand, has always been a major concern for establishing an industrial-scale process, since some of the trace components in waste gases, such as NH3, H2S, and NOx, can have inhibiting or even toxic effects on microbial growth and product formation. Thus, this study aims to identify the effects of the main trace impurities in syngas from gasification of biogenic residues by the supply of defined concentrations of trace impurities to the cultivation medium. Autotrophic gas fermentation studies were performed with C. carboxidivorans in batch-operated fully-controlled stirred-tank bioreactors with continuous gas supply (80% CO and 20% CO2). The syngas components NH3 and H2S had a positive effect on both growth and alcohol formation (ethanol, 1-butanol, and 1-hexanol). The maximum biomass concentration was increased by more than 50%, and the maximum ethanol concentration was more than doubled with 5.0 g L−1 NH4Cl or 1.0 g L−1 H2S provided by the addition of 2.2 g L−1 thioacetamide. The addition of the nitrogen oxide species nitrate and nitrite, on the other hand, reduced biomass growth as well as alcohol concentrations. Already, the supply of 0.1 g L−1 NaNO3 resulted in reduced growth and 25% reduction of the maximum ethanol concentration. The production of the longer chain alcohols 1-butanol and 1-hexanol was reduced as well. All NaNO2 concentrations tested showed a strong toxic effect on the metabolism of C. carboxidivorans, and neither CO consumption nor product formation was observed after addition. As a consequence, NOx components in syngas from the gasification of biogenic residues should be reduced by the gasification process and/or selectively removed from the syngas after gasification.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Shaohuang Shen ◽  
Guan Wang ◽  
Ming Zhang ◽  
Yin Tang ◽  
Yang Gu ◽  
...  

Abstract Hexanol–butanol–ethanol fermentation from syngas by Clostridium carboxidivorans P7 is a promising route for biofuel production. However, bacterial agglomeration in the culture of 37 °C severely hampers the accumulation of biomass and products. To investigate the effect of culture temperature on biomass growth and higher-alcohol production, C. carboxidivorans P7 was cultivated at both constant and two-step temperatures in the range from 25 to 37 °C. Meanwhile, Tween-80 and saponin were screened out from eight surfactants to alleviate agglomeration at 37 °C. The results showed that enhanced higher-alcohol production was contributed mainly by the application of two-step temperature culture rather than the addition of anti-agglomeration surfactants. Furthermore, comparative transcriptome revealed that although 37 °C promoted high expression of genes involved in the Wood–Ljungdahl pathway, genes encoding enzymes catalyzing acyl-condensation reactions associated with higher-alcohol production were highly expressed at 25 °C. This study gained greater insight into temperature-effect mechanism on syngas fermentation by C. carboxidivorans P7.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yi-Fan Han ◽  
Bin-Tao Xie ◽  
Guang-xun Wu ◽  
Ya-Qiong Guo ◽  
De-Mao Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document