Ethanoligenens harbinense gen. nov., sp. nov., isolated from molasses wastewater

2006 ◽  
Vol 56 (4) ◽  
pp. 755-760 ◽  
Author(s):  
Defeng Xing ◽  
Nanqi Ren ◽  
Qiubo Li ◽  
Ming Lin ◽  
Aijie Wang ◽  
...  

Two strictly anaerobic bacterial strains (YUAN-3T and X-29) were isolated from anaerobic activated sludge of molasses wastewater in a continuous stirred-tank reactor. The strains were Gram-positive, non-spore-forming, mesophilic and motile. Cells were regular rods (0·4–0·8×1·5–8·0 μm) and occurred singly, in pairs and sometimes in chains of up to eight. Autoaggregative and autofluorescent growth of strain YUAN-3T and non-aggregative growth of strain X-29 were observed at 20–44 °C and pH 3·5–9·0. Both strains hydrolysed gelatin and aesculin and fermented several kinds of mono-, di- and oligosaccharides. Fermentation end products formed from glucose were acetate, ethanol, hydrogen and carbon dioxide. The predominant cellular fatty acids were the branched-chain fatty acids iso-C16 : 0 (44·18 %) and iso-C12 : 0 (26·67 %). The DNA G+C contents of strains YUAN-3T and X-29 were 47·8 and 49·0 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolates represent a novel phyletic sublineage within the Clostridium cellulosi rRNA cluster, with <92 % 16S rRNA gene sequence similarity to currently known species. On the basis of polyphasic evidence from this study, it is proposed that the unknown bacterium should be classified in a new genus as a novel species, Ethanoligenens harbinense gen. nov., sp. nov. The type strain of Ethanoligenens harbinense is YUAN-3T (=JCM 12961T=CGMCC 1.5033T).

2004 ◽  
Vol 54 (6) ◽  
pp. 2257-2262 ◽  
Author(s):  
Shuangya Chen ◽  
Xiuzhu Dong

Two mesophilic anaerobic bacterial strains (Z7T and Z1) were isolated from waste water sludge of the Xinanzhang paper mill, Beijing, China. The strains were Gram-positive, non-spore-forming and motile. Cells were thin rods (0·2–0·4×4·0–8·0 μm). Growth of the strains was observed at 20–42 °C and pH 5·0–7·5. Both strains hydrolysed gelatin and aesculin and fermented several kinds of mono-, di- and oligosaccharides. The fermentation end products formed from glucose were acetate, ethanol, hydrogen and carbon dioxide. The predominant cellular fatty acids were the branched-chain fatty acids isoC15 : 0 (42·83 %) and isoC14 : 0 (32·11 %). The DNA G+C contents of strains Z7T and Z1 were 50·4 and 48·6 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolates represent a new phyletic sublineage within the Clostridium leptum rRNA cluster, with <91 % 16S rRNA gene sequence similarity to currently described species. On the basis of polyphasic evidence from this study, Acetanaerobacterium elongatum gen. nov., sp. nov., a novel genus and species, is proposed, with strain Z7T (=JCM 12359T=AS 1.5012T) as the type strain.


2011 ◽  
Vol 61 (2) ◽  
pp. 375-380 ◽  
Author(s):  
Maki Teramoto ◽  
Motoyuki Ohuchi ◽  
Ariani Hatmanti ◽  
Yeti Darmayati ◽  
Yantyati Widyastuti ◽  
...  

Three Gram-negative, motile, mesophilic, aerobic, rod-shaped bacterial strains, designated 2O1T, 1O14 and 1O18, were isolated from Indonesian seawater after enrichment with crude oil and a continuous supply of supplemented seawater. The strains exhibited high n-alkane-degrading activity, which indicated that the strains were important degraders of petroleum aliphatic hydrocarbons in tropical marine environments. Phylogenetic analyses based on 16S rRNA gene sequences of members of the Gammaproteobacteria showed that the isolates formed a coherent and distinct cluster in a stable lineage containing Oceanobacter kriegii IFO 15467T (96.4–96.5 % 16S rRNA gene sequence similarity) and Thalassolituus oleivorans MIL-1T. DNA G +C content was 53.0–53.1 mol%. The major fatty acids were C16 : 0, C16 : 1 ω7 and C18 : 1 ω9 and the hydroxy fatty acids were C12 : 0 3-OH and C10 : 0 3-OH. The polar lipids were phosphatidylglycerol, a ninhydrin-positive phospholipid(s) and glycolipids. The major quinone was Q-9 (97–99 %), which distinguished the isolates from Oceanobacter kriegii NBRC 15467T (Q-8; 91 %). On the basis of phenotypic, genotypic and chemotaxonomic data, including DNA–DNA hybridization, the isolates represent a novel genus and species, for which the name Oleibacter marinus gen. nov., sp. nov. is proposed. The type strain of Oleibacter marinus is 2O1T (=NBRC 105760T =BTCC B-675T).


2010 ◽  
Vol 60 (9) ◽  
pp. 2221-2225 ◽  
Author(s):  
Kegui Zhang ◽  
Lei Song ◽  
Xiuzhu Dong

Two strictly anaerobic, proteolytic bacterial strains, designated strain D3RC-2T and D3RC-3r, were isolated from a cellulose-degrading mixed culture enriched from yak rumen content. The strains were Gram-stain negative and non-spore-forming with cell sizes of 0.5–0.8×0.6–2.0 μm. The temperature range for growth was 24–46 °C (optimum 38–39 °C) and the pH range was between 5.6 and 8.7 (optimum 7.0–7.3). Both strains used soya peptone, tryptone, l-phenylalanine, l-leucine, l-methionine, l-serine, l-valine, l-threonine and l-histidine as carbon and nitrogen sources, but did not use any of the saccharides tested. The major fermentation products from PY medium were acetate, propionate and iso-butyrate. The DNA G+C contents of strains D3RC-2T and D3RC-3r were 41.0±0.1 mol% and 41.3±0.1 mol% (HPLC), respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the two strains represented a new phyletic sublineage within the family Clostridiaceae, with <93.8 % 16S rRNA gene sequence similarity to recognized species. On the basis of the phenotypic, genotypic and physiological evidence, strains D3RC-2T and D3RC-3r are proposed as representing a novel species of a new genus, for which the name Proteiniclasticum ruminis gen. nov., sp. nov. is proposed. The type strain of the type species is D3RC-2T (=AS 1.5057T=JCM 14817T).


2005 ◽  
Vol 55 (4) ◽  
pp. 1563-1568 ◽  
Author(s):  
Jarkko Rapala ◽  
Katri A. Berg ◽  
Christina Lyra ◽  
R. Maarit Niemi ◽  
Werner Manz ◽  
...  

Thirteen bacterial isolates from lake sediment, capable of degrading cyanobacterial hepatotoxins microcystins and nodularin, were characterized by phenotypic, genetic and genomic approaches. Cells of these isolates were Gram-negative, motile by means of a single polar flagellum, oxidase-positive, weakly catalase-positive and rod-shaped. According to phenotypic characteristics (carbon utilization, fatty acid and enzyme activity profiles), the G+C content of the genomic DNA (66·1–68·0 mol%) and 16S rRNA gene sequence analysis (98·9–100 % similarity) the strains formed a single microdiverse genospecies that was most closely related to Roseateles depolymerans (95·7–96·3 % 16S rRNA gene sequence similarity). The isolates assimilated only a few carbon sources. Of the 96 carbon sources tested, Tween 40 was the only one used by all strains. The strains were able to mineralize phosphorus from organic compounds, and they had strong leucine arylamidase and chymotrypsin activities. The cellular fatty acids identified from all strains were C16 : 0 (9·8–19 %) and C17 : 1 ω7c (<1–5·8 %). The other predominant fatty acids comprised three groups: summed feature 3 (<1–2·2 %), which included C14 : 0 3-OH and C16 : 1 iso I, summed feature 4 (54–62 %), which included C16 : 1 ω7c and C15 : 0 iso OH, and summed feature 7 (8·5–28 %), which included ω7c, ω9c and ω12t forms of C18 : 1. A more detailed analysis of two strains indicated that C16 : 1 ω7c was the main fatty acid. The phylogenetic and phenotypic features separating our strains from recognized bacteria support the creation of a novel genus and species, for which the name Paucibacter toxinivorans gen. nov., sp. nov. is proposed. The type strain is 2C20T (=DSM 16998T=HAMBI 2767T=VYH 193597T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3965-3970 ◽  
Author(s):  
Estelle Jumas-Bilak ◽  
Philippe Bouvet ◽  
Emma Allen-Vercoe ◽  
Fabien Aujoulat ◽  
Paul A. Lawson ◽  
...  

Five human clinical isolates of an unknown, strictly anaerobic, slow-growing, Gram-stain-negative, rod-shaped micro-organism were subjected to a polyphasic taxonomic study. Comparative 16S rRNA gene sequence-based phylogeny showed that the isolates grouped in a clade that included members of the genera Pyramidobacter, Jonquetella, and Dethiosulfovibrio; the type strain of Pyramidobacter piscolens was the closest relative with 91.5–91.7 % 16S rRNA gene sequence similarity. The novel strains were mainly asaccharolytic and unreactive in most conventional biochemical tests. Major metabolic end products in trypticase/glucose/yeast extract broth were acetic acid and propionic acid and the major cellular fatty acids were C13 : 0 and C16 : 0, each of which could be used to differentiate the strains from P. piscolens. The DNA G+C content based on whole genome sequencing for the reference strain 22-5-S 12D6FAA was 57 mol%. Based on these data, a new genus, Rarimicrobium gen. nov., is proposed with one novel species, Rarimicrobium hominis sp. nov., named after the exclusive and rare finding of the taxon in human samples. Rarimicrobium is the fifth genus of the 14 currently characterized in the phylum Synergistetes and the third one in subdivision B that includes human isolates. The type strain of Rarimicrobium hominis is ADV70T ( = LMG 28163T = CCUG 65426T).


Author(s):  
Soon Dong Lee ◽  
Yeong-Sik Byeon ◽  
Sung-Min Kim ◽  
Hong Lim Yang ◽  
In Seop Kim

Taxonomic positions of four Gram-negative bacterial strains, which were isolated from larvae of two insects in Jeju, Republic of Korea, were determined by a polyphasic approach. Strains CWB-B4, CWB-B41 and CWB-B43 were recovered from larvae of Protaetia brevitarsis seulensis, whereas strain BWR-B9T was from larvae of Allomyrina dichotoma. All the isolates grew at 10–37 °C, at pH 5.0–9.0 and in the presence of 4 % (w/v) NaCl. The 16S rRNA gene phylogeny showed that the four isolates formed two distinct sublines within the order Enterobacteriales and closely associated with members of the genus Jinshanibacter . The first group represented by strain CWB-B4 formed a tight cluster with Jinshanibacter xujianqingii CF-1111T (99.3 % sequence similarity), whereas strain BWR-B9T was most closely related to Jinshanibacter zhutongyuii CF-458T (99.5 % sequence similarity). The 92 core gene analysis showed that the isolates belonged to the family Budviciaceae and supported the clustering shown in 16S rRNA gene phylogeny. The genomic DNA G+C content of the isolates was 45.2 mol%. A combination of overall genomic relatedness and phenotypic distinctness supported that three isolates from Protaetia brevitarsis seulensis are different strains of Jinshanibacter xujianqingii , whereas one isolate from Allomyrina dichotoma represents a new species of the genus Jinshanibacter . On the basis of results obtained here, Jinshanibacter allomyrinae sp. nov. (type strain BWR-B9T=KACC 22153T=NBRC 114879T) and Insectihabitans xujianqingii gen. nov., comb. nov. are proposed, with the emended descriptions of the genera Jinshanibacter , Limnobaculum and Pragia .


2006 ◽  
Vol 56 (5) ◽  
pp. 959-963 ◽  
Author(s):  
Shams Tabrez Khan ◽  
Yasuyoshi Nakagawa ◽  
Shigeaki Harayama

Four Gram-negative, orange-coloured, aerobic, heterotrophic bacteria were isolated from sediment samples collected on the Pacific coast of Japan near the cities of Toyohashi and Katsuura. 16S rRNA gene sequence analysis indicated that these strains form a distinct lineage within the family Flavobacteriaceae. The four isolates shared 99.9–100 % 16S rRNA gene sequence similarity with each other and showed 88–90.9 % similarity with their neighbours in the family Flavobacteriaceae. The four strains also shared high DNA–DNA reassociation values of 67–99 % with each other. All the strains grew at 37 °C but not at 4 °C, and degraded gelatin, starch and DNA. The major fatty acids were i-C15 : 0, a-C15 : 0, i-C16 : 0 and i-C17 : 0 3-OH. However, two common fatty acids of members of the Flavobacteriaceae, i-C15 : 1 and a-C15 : 1, were absent in these strains. The DNA G+C contents of the four strains were in the range 35–37 mol%. On the basis of the polyphasic evidence, it was concluded that these strains should be classified as a novel genus and a novel species in the family Flavobacteriaceae, for which the name Sandarakinotalea sediminis gen. nov., sp. nov. is proposed. The type strain of Sandarakinotalea sediminis is CKA-5T (=NBRC 100970T=LMG 23247T).


2004 ◽  
Vol 54 (4) ◽  
pp. 1177-1184 ◽  
Author(s):  
Irene Wagner-Döbler ◽  
Holger Rheims ◽  
Andreas Felske ◽  
Aymen El-Ghezal ◽  
Dirk Flade-Schröder ◽  
...  

A water sample from the North Sea was used to isolate the abundant heterotrophic bacteria that are able to grow on complex marine media. Isolation was by serial dilution and spread plating. Phylogenetic analysis of nearly complete 16S rRNA gene sequences revealed that one of the strains, HEL-45T, had 97·4 % sequence similarity to Sulfitobacter mediterraneus and 96·5 % sequence similarity to Staleya guttiformis. Strain HEL-45T is a Gram-negative, non-motile rod and obligate aerobe and requires sodium and 1–7 % sea salts for growth. It contains storage granules and does not produce bacteriochlorophyll. Optimal growth temperatures are 25–30 °C. The DNA base composition (G+C content) is 60·1 mol%. Strain HEL-45T has Q10 as the dominant respiratory quinone. The major polar lipids are phosphatidyl glycerol, diphosphatidyl glycerol, phosphatidyl choline, phosphatidyl ethanolamine and an aminolipid. The fatty acids comprise 18 : 1ω7c, 18 : 0, 16 : 1ω7c, 16 : 0, 3-OH 10 : 0, 3-OH 12 : 1 (or 3-oxo 12 : 0) and traces of an 18 : 2 fatty acid. Among the hydroxylated fatty acids only 3-OH 12 : 1 (or 3-oxo 12 : 0) appears to be amide linked, whereas 3-OH 10 : 0 appears to be ester linked. The minor fatty acid components (between 1 and 7 %) allow three subgroups to be distinguished in the Sulfitobacter/Staleya clade, placing HEL-45T into a separate lineage characterized by the presence of 3-OH 12 : 1 (or 3-oxo 12 : 0) and both ester- and amide-linked 16 : 1ω7c phospholipids. HEL-45T produces indole and derivatives thereof, several cyclic dipeptides and thryptanthrin. Phylogenetic analysis of 16S rRNA gene sequences and chemotaxonomic data support the description of a new genus and species, to include Oceanibulbus indolifex gen. nov., sp. nov., with the type strain HEL-45T (=DSM 14862T=NCIMB 13983T).


2007 ◽  
Vol 57 (9) ◽  
pp. 2089-2095 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Sooyeon Park ◽  
Tae-Kwang Oh

Two Gram-negative, non-motile, pleomorphic bacterial strains, DS-40T and DS-45T, were isolated from a soil sample collected from Dokdo, Korea, and their exact taxonomic positions were investigated by using a polyphasic approach. Strains DS-40T and DS-45T grew optimally at 25 °C and pH 6.5–7.5 in the presence of 0–1.0 % (w/v) NaCl. They contained MK-7 as the predominant menaquinone and possessed iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH) as the major fatty acids. The DNA G+C contents of strains DS-40T and DS-45T were 36.0 and 36.8 mol%, respectively. Strains DS-40T and DS-45T shared a 16S rRNA gene sequence similarity of 96.7 % and demonstrated a mean DNA–DNA relatedness level of 12 %. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strains DS-40T and DS-45T were most closely phylogenetically affiliated with the genus Pedobacter of the family Sphingobacteriaceae. Strains DS-40T and DS-45T exhibited 16S rRNA gene sequence similarity values of 91.4–93.7 and 89.9–91.6 % with respect to the type strains of Pedobacter and Sphingobacterium species, respectively. Phenotypic and chemotaxonomic properties, together with the phylogenetic data, support the assignment of strains DS-40T and DS-45T as two distinct species within the genus Pedobacter. On the basis of phenotypic, phylogenetic and genetic data, strains DS-40T and DS-45T represent two novel species of the genus Pedobacter, for which the names Pedobacter lentus sp. nov. and Pedobacter terricola sp. nov. are proposed, respectively. The respective type strains are DS-40T (=KCTC 12875T=JCM 14593T) and DS-45T (=KCTC 12876T=JCM 14594T).


2006 ◽  
Vol 56 (3) ◽  
pp. 625-628 ◽  
Author(s):  
Dores G. Cirne ◽  
Osvaldo D. Delgado ◽  
Sankar Marichamy ◽  
Bo Mattiasson

A strictly anaerobic, mesophilic, endospore-forming, lipolytic bacterium, designated strain R1T, was isolated from bovine rumen fluid and characterized. Cells of this isolate were Gram-positive, non-motile rods that formed spherical terminal spores. The overall biochemical and physiological characteristics indicated that this strain should be placed in the genus Clostridium. The strain grew at temperatures between 25 and 47 °C (optimum, 37 °C), at pH between 5·0 and 8·5 (optimum pH 5·5–7·0) and in NaCl concentrations of 0–3 % (w/v). The isolate was not able to utilize glucose or other carbohydrates as carbon sources. The DNA G+C content was 31·2 mol%. Sequence analysis of the 16S rRNA gene of R1T revealed that it has the closest match (98 % similarity) with Clostridium tetanomorphum DSM 4474T. The highest levels of DNA–DNA relatedness of the isolate were 61·9 and 54·3 % with Clostridium pascui DSM 10365T and C. tetanomorphum DSM 4474T, respectively. Based on 16S rRNA gene sequence similarity, phylogenetic analysis, DNA G+C content, DNA–DNA hybridization data and distinct phenotypic characteristics, strain R1T (=DSM 17049T=CCUG 50446T) was classified in the genus Clostridium, as a member of a novel species, for which the name Clostridium lundense sp. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document