Jinshanibacter allomyrinae sp. nov., isolated from larvae of Allomyrina dichotoma, proposal of Insectihabitans xujianqingii gen. nov., comb. nov. and emended descriptions of the genera Jinshanibacter, Limnobaculum and Pragia

Author(s):  
Soon Dong Lee ◽  
Yeong-Sik Byeon ◽  
Sung-Min Kim ◽  
Hong Lim Yang ◽  
In Seop Kim

Taxonomic positions of four Gram-negative bacterial strains, which were isolated from larvae of two insects in Jeju, Republic of Korea, were determined by a polyphasic approach. Strains CWB-B4, CWB-B41 and CWB-B43 were recovered from larvae of Protaetia brevitarsis seulensis, whereas strain BWR-B9T was from larvae of Allomyrina dichotoma. All the isolates grew at 10–37 °C, at pH 5.0–9.0 and in the presence of 4 % (w/v) NaCl. The 16S rRNA gene phylogeny showed that the four isolates formed two distinct sublines within the order Enterobacteriales and closely associated with members of the genus Jinshanibacter . The first group represented by strain CWB-B4 formed a tight cluster with Jinshanibacter xujianqingii CF-1111T (99.3 % sequence similarity), whereas strain BWR-B9T was most closely related to Jinshanibacter zhutongyuii CF-458T (99.5 % sequence similarity). The 92 core gene analysis showed that the isolates belonged to the family Budviciaceae and supported the clustering shown in 16S rRNA gene phylogeny. The genomic DNA G+C content of the isolates was 45.2 mol%. A combination of overall genomic relatedness and phenotypic distinctness supported that three isolates from Protaetia brevitarsis seulensis are different strains of Jinshanibacter xujianqingii , whereas one isolate from Allomyrina dichotoma represents a new species of the genus Jinshanibacter . On the basis of results obtained here, Jinshanibacter allomyrinae sp. nov. (type strain BWR-B9T=KACC 22153T=NBRC 114879T) and Insectihabitans xujianqingii gen. nov., comb. nov. are proposed, with the emended descriptions of the genera Jinshanibacter , Limnobaculum and Pragia .

2020 ◽  
Vol 70 (4) ◽  
pp. 2226-2232 ◽  
Author(s):  
Jun Heo ◽  
Hayoung Cho ◽  
Mi Ae Kim ◽  
Moriyuki Hamada ◽  
Tomohiko Tamura ◽  
...  

A Gram-stain-positive, strictly aerobic, polar flagellated, short rod-shaped bacterium, designated DFW100M-13T, was isolated from gut of the larva of Protaetia brevitarsis seulensis collected from Wanju-gun, South Korea. The growth range of NaCl concentration was 0–3 % (w/v) (optimally 0 % (w/v)), the temperature range for growth was 10–40 °C (optimally 28–30 °C), and the pH range for growth was pH 6.0–9.0 (optimally pH 7.0–8.0). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DFW100M-13T had a high sequence similarity to members of the genus Microbacterium , having the highest similarity with Microbacterium luticocti DSM 19459T (97.7 %), Microbacterium rhizosphaerae CHO1T (97.1 %), and Microbacterium immunditiarum SK 18T (97.0 %), and formed a distinct lineage with Microbacterium luticocti DSM 19459T within the genus Microbacterium . A phylogenetic tree based on house-keeping genes also showed the result similar to the 16S rRNA gene-based tree. The main respiratory quinone (>10 %) was MK-11, MK-12 and MK-10, and the predominant cellular fatty acids (>10 %) were iso-C16 : 0, anteiso-C17 : 0 and anteiso-C15 : 0. The polar lipids were composed of diphosphatidylglycerol, phosphatidylglycerol, an inidentified glycolipid and an unidnetified lipid. The peptidoglycan type was supposed to be the B2ß with amino acids d-alanine, d-glutamic acid, glycine, l-homoserine and d-ornithine. The genomic DNA G+C content was 68.0 mol%. Based on the polyphasic taxonomic data, strain DFW100M-13T is considered to represent a novel species, for which the name Microbacterium protaetiae sp. nov. is proposed. The type strain is DFW100M-13T (=KACC 19323T=NBRC 113120T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1524-1531 ◽  
Author(s):  
Seong Chan Park ◽  
Han Na Choe ◽  
Yeoung Min Hwang ◽  
Keun Sik Baik ◽  
Se Na Kim ◽  
...  

Two orange, rod-shaped, Gram-reaction-negative, aerobic bacterial strains devoid of flagella and gliding motility, designated strains KYW371T and KS18 were isolated from a seawater sample and a shellfish Ruditapes philippinarum, respectively, collected from Gwangyang Bay, Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two strains belonged to the family Flavobacteriaceae ; and that strain KYW371T was most closely related to Algibacter mikhailovii LMG 23988T (96.7 % sequence similarity), Pontirhabdus pectinivorans JC2675T (96.3 %), Postechiella marina M091T (95.6 %) and Hyunsoonleella jejuensis CNU004T (95.3 %). The 16S rRNA gene sequence similarity (98.8 %) and DNA–DNA relatedness (78.1 %) between strains KYW371T and KS18 indicated that these two strains represented a single species. The predominant cellular fatty acids of strain KYW371T were iso-C15 : 1 G, iso-C15 : 0, iso-C15 : 0 3-OH and iso-C17 : 0 3-OH. Flexirubin-type pigments were absent. MK-6 was the only isoprenoid quinone and the DNA G+C content was 34.8–36.6 mol%. Data from this taxonomic study employing a polyphasic approach suggested that the isolates represent a novel species in a new genus in the family Flavobacteriaceae , for which the name Marinivirga aestuarii gen. nov., sp. nov. is proposed. The type strain is KYW371T ( = KCTC 23449T = JCM 17452T), and an additional strain of the species is KS18 ( = KCTC 23128 = JCM 16845). Emended descriptions of the genera Hyunsoonleella , Jejuia and Pontirhabdus and the species Hyunsoonleella jejuensis , Jejuia pallidilutea and Pontirhabdus pectinivorans are also proposed.


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3691-3696 ◽  
Author(s):  
Toshihiko Takada ◽  
Takashi Kurakawa ◽  
Hirokazu Tsuji ◽  
Koji Nomoto

Three Gram-stain-positive, obligately anaerobic, non-motile, non-spore-forming, spindle-shaped bacterial strains (HT03-11T, KO-38 and TT-111), isolated from human faeces were characterized by phenotypic and molecular taxonomic methods. Comparative 16S rRNA gene sequencing showed that the strains were highly related to each other genetically (displaying >99 % sequence similarity) and represented a previously unknown subline within the Blautia coccoides rRNA group of organisms (cluster XIVa). The closest phylogenetic neighbours of strain HT03-11T were Clostridium bolteae WAL 16351T (93.7 % 16S rRNA gene sequence similarity) and Clostridium saccharolyticum WM1T (93.7 % similarity). All isolates produced lactic acid, formic acid, acetic acid and succinic acid as fermentation end products from glucose. Their chemotaxonomic properties included lysine as the cell wall diamino acid and C16 : 0, C18 : 1ω7c DMA and C16 : 0 DMA as the major fatty acids. The G+C contents of the genomic DNA were 46.9–47.2 mol% (HPLC). Several phenotypic and chemotaxonomic characteristics could be readily used to differentiate the isolates from phylogenetically related clostridia. Therefore, strains HT03-11T, KO-38 and TT-111 represent a novel species in a new genus of the family Lachnospiraceae , for which the name Fusicatenibacter saccharivorans gen. nov., sp. nov. is proposed. The type strain of the type species is HT03-11T ( = YIT 12554T = JCM 18507T = DSM 26062T).


Author(s):  
Wen-Ming Chen ◽  
Ting-Hsuan Chang ◽  
Che-Chia Yang ◽  
Der-Shyan Sheu ◽  
Li-Cheng Jheng ◽  
...  

Two bacterial strains, designated HSP-20T and CCP-1T, isolated from freshwater habitats in Taiwan, were characterized by polyphasic taxonomy. Both strains were Gram-stain-negative, aerobic, non-motile and rod-shaped. Cells of strains HSP-20T and CCP-1T formed pink and dark red coloured colonies, respectively. Both strains contained bacteriochlorophyll a, and showed optimum growth under anaerobic conditions by photoheterotrophy, but no growth by photoautotrophy. Phylogenetic analyses based on 16S rRNA gene and whole-genome sequences indicated that both strains belonged to the genus Rhodobacter . Analysis of 16S rRNA gene sequences showed that strains HSP-20T and CCP-1T shared 98.3 % sequence similarity and were closely related to Rhodobacter tardus CYK-10T (96.0 %) and Rhodobacter flagellatus SYSU G03088T (96.0 %), respectively. Both strains shared common chemotaxonomic characteristics including Q-10 as the major isoprenoid quinone, C18 : 1  ω7c as the predominant fatty acid, and phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine as the main polar lipids. The DNA G+C content of both strains was 66.2 mol%. The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values between these two novel isolates and their closest relatives were below the cut-off values of 95–96, 90 and 70 %, respectively, used for species demarcation. On the basis of phenotypic and genotypic properties and phylogenetic inference, both strains should be classified as novel species within the genus Rhodobacter , for which the names Rhodobacter amnigenus sp. nov. (=BCRC 81193T=LMG 31334T) and Rhodobacter ruber sp. nov. (=BCRC 81189T=LMG 31335T) are proposed.


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3877-3884 ◽  
Author(s):  
Celine De Maesschalck ◽  
Filip Van Immerseel ◽  
Venessa Eeckhaut ◽  
Siegrid De Baere ◽  
Margo Cnockaert ◽  
...  

Strains LMG 27428T and LMG 27427 were isolated from the caecal content of a chicken and produced butyric, lactic and formic acids as major metabolic end products. The genomic DNA G+C contents of strains LMG 27428T and LMG 27427 were 40.4 and 38.8 mol%. On the basis of 16S rRNA gene sequence similarity, both strains were most closely related to the generically misclassified Streptococcus pleomorphus ATCC 29734T. Strain LMG 27428T could be distinguished from S. pleomorphus ATCC 29734T based on production of more lactic acid and less formic acid in M2GSC medium, a higher DNA G+C content and the absence of activities of acid phosphatase and leucine, arginine, leucyl glycine, pyroglutamic acid, glycine and histidine arylamidases, while strain LMG 27428 was biochemically indistinguishable from S. pleomorphus ATCC 29734T. The novel genus Faecalicoccus gen. nov. within the family Erysipelotrichaceae is proposed to accommodate strains LMG 27428T and LMG 27427. Strain LMG 27428T ( = DSM 26963T) is the type strain of Faecalicoccus acidiformans sp. nov., and strain LMG 27427 ( = DSM 26962) is a strain of Faecalicoccus pleomorphus comb. nov. (type strain LMG 17756T = ATCC 29734T = DSM 20574T). Furthermore, the nearest phylogenetic neighbours of the genus Faecalicoccus are the generically misclassified Eubacterium cylindroides DSM 3983T (94.4 % 16S rRNA gene sequence similarity to strain LMG 27428T) and Eubacterium biforme DSM 3989T (92.7 % 16S rRNA gene sequence similarity to strain LMG 27428T). We present genotypic and phenotypic data that allow the differentiation of each of these taxa and propose to reclassify these generically misnamed species of the genus Eubacterium formally as Faecalitalea cylindroides gen. nov., comb. nov. and Holdemanella biformis gen. nov., comb. nov., respectively. The type strain of Faecalitalea cylindroides is DSM 3983T = ATCC 27803T = JCM 10261T and that of Holdemanella biformis is DSM 3989T = ATCC 27806T = CCUG 28091T.


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2565-2569 ◽  
Author(s):  
Cynthia Alias-Villegas ◽  
Valme Jurado ◽  
Leonila Laiz ◽  
Cesareo Saiz-Jimenez

A Gram-stain-negative, aerobic, motile, rod-shaped bacterium, strain SC13E-S71T, was isolated from tuff, volcanic rock, where the Roman catacombs of Saint Callixtus in Rome, Italy, was excavated. Analysis of 16S rRNA gene sequences revealed that strain SC13E-S71T belongs to the genus Sphingopyxis , and that it shows the greatest sequence similarity with Sphingopyxis chilensis DSM 14889T (98.72 %), Sphingopyxis taejonensis DSM 15583T (98.65 %), Sphingopyxis ginsengisoli LMG 23390T (98.16 %), Sphingopyxis panaciterrae KCTC 12580T (98.09 %), Sphingopyxis alaskensis DSM 13593T (98.09 %), Sphingopyxis witflariensis DSM 14551T (98.09 %), Sphingopyxis bauzanensis DSM 22271T (98.02 %), Sphingopyxis granuli KCTC 12209T (97.73 %), Sphingopyxis macrogoltabida KACC 10927T (97.49 %), Sphingopyxis ummariensis DSM 24316T (97.37 %) and Sphingopyxis panaciterrulae KCTC 22112T (97.09 %). The predominant fatty acids were C18 : 1ω7c, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), C14 : 0 2-OH and C16 : 0. The predominant menaquinone was MK-10. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and sphingoglycolipid. These chemotaxonomic data are common to members of the genus Sphingopyxis . However, a polyphasic approach using physiological tests, DNA base ratios, DNA–DNA hybridization and 16S rRNA gene sequence comparisons showed that the isolate SC13E-S71T belongs to a novel species within the genus Sphingopyxis , for which the name Sphingopyxis italica sp. nov. is proposed. The type strain is SC13E-S71T ( = DSM 25229T = CECT 8016T).


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3341-3345 ◽  
Author(s):  
Jia-Fa Wu ◽  
Jie Li ◽  
Zhi-Qing You ◽  
Si Zhang

A novel Gram-stain-positive actinobacterium, designated strain SCSIO 11529T, was isolated from tissues of the stony coral Galaxea fascicularis, and characterized by using a polyphasic approach. The temperature range for growth was 22–50 °C (optimum 28–45 °C), the pH range for growth was 6.0–8.0 (optimum pH 7.0), and the NaCl concentration range for growth was 0–7 % (w/v) NaCl. The polar lipid profile contained diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine and an unknown polar lipid. The predominant menaquinone was MK-9(H4). The major fatty acids (>10 %) were iso-C16 : 0, iso-C17 : 1ω6c, iso-C16 : 1 H and C16 : 1ω7c/iso-C15 : 0 2-OH. The DNA G+C content of strain SCSIO 11529T was 70.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SCSIO 11529T belongs to the genus Prauserella , with the closest neighbours being Prauserella marina MS498T (97.0 % 16S rRNA gene sequence similarity), Prauserella rugosa DSM 43194T (96.4 %) and Prauserella flava YIM 90630T (95.9 %). Based on the evidence of the present study, strain SCSIO 11529T is considered to represent a novel species of the genus Prauserella , for which the name Prauserella coralliicola sp. nov. is proposed. The type strain is SCSIO 11529T ( = DSM 45821T = NBRC 109418T).


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2163-2168 ◽  
Author(s):  
Yong-Taek Jung ◽  
Ji-Hoon Kim ◽  
So-Jung Kang ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding and pleomorphic bacterial strain, designated DPG-25T, was isolated from seawater in a seaweed farm in the South Sea in Korea and its taxonomic position was investigated by using a polyphasic approach. Strain DPG-25T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Flexirubin-type pigments were not produced. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DPG-25T formed a cluster with the type strains of Actibacter sediminis , Aestuariicola saemankumensis and Lutimonas vermicola . Strain DPG-25T exhibited 16S rRNA gene sequence similarity values of 95.3, 93.1 and 93.6 % to the type strains of Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola , respectively. Strain DPG-25T contained MK-6 as the predominant menaquinone and iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids detected in strain DPG-25T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content was 39.9 mol%. Differential phenotypic properties and the phylogenetic distinctiveness of strain DPG-25T demonstrated that this strain is distinguishable from Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola . On the basis of the data presented here, strain DPG-25T represents a novel species in a novel genus of the family Flavobacteriaceae , for which the name Namhaeicola litoreus gen. nov., sp. nov. is proposed. The type strain of Namhaeicola litoreus is DPG-25T ( = KCTC 23702T  = CCUG 61485T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1786-1793 ◽  
Author(s):  
Wallace Rafael Souza ◽  
Rafael Eduardo Silva ◽  
Michael Goodfellow ◽  
Kanungnid Busarakam ◽  
Fernanda Sales Figueiro ◽  
...  

Strain SB026T was isolated from Brazilian rainforest soil and its taxonomic position established using data from a polyphasic study. The organism showed a combination of chemotaxonomic and morphological features consistent with its classification in the genus Amycolatopsis and formed a branch in the Amycolatopsis 16S rRNA gene tree together with Amycolatopsis bullii NRRL B-24847T, Amycolatopsis plumensis NRRL B-24324T, Amycolatopsis tolypomycina DSM 44544T and Amycolatopsis vancoresmycina NRRL B-24208T. It was related most closely to A. bullii NRRL B-24847T (99.0 % 16S rRNA gene sequence similarity), but was distinguished from this strain by a low level of DNA–DNA relatedness (~46 %) and discriminatory phenotypic properties. Based on the combined genotypic and phenotypic data, it is proposed that the isolate should be classified in the genus Amycolatopsis as representing a novel species, Amycolatopsis rhabdoformis sp. nov. The type strain is SB026T ( = CBMAI 1694T = CMAA 1285T = NCIMB 14900T).


Sign in / Sign up

Export Citation Format

Share Document