scholarly journals Shewanella canadensis sp. nov. and Shewanella atlantica sp. nov., manganese dioxide- and hexahydro-1,3,5-trinitro-1,3,5-triazine-reducing, psychrophilic marine bacteria

2007 ◽  
Vol 57 (9) ◽  
pp. 2155-2162 ◽  
Author(s):  
Jian-Shen Zhao ◽  
Dominic Manno ◽  
Sonia Thiboutot ◽  
Guy Ampleman ◽  
Jalal Hawari

Two strains belonging to the genus Shewanella, HAW-EB2T and HAW-EB5T, were isolated previously from marine sediment sampled from the Atlantic Ocean, near Halifax harbour in Canada, for their potential to degrade explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). In the present study, strains HAW-EB2T and HAW-EB5T were found to display high 16S rRNA gene sequence similarity (90–99.5 %) to species of Shewanella, but their gyrB sequences were significantly different from each other and from species of Shewanella (79–87.6 %). Furthermore, DNA–DNA hybridization showed that the genomic DNA of the two strains was only 22 % related and showed less than 41 % relatedness to closely related species of Shewanella. In comparison to other species of Shewanella, strains HAW-EB2T and HAW-EB5T were also unique in some phenotypic properties such as activities of β-galactosidase and tyrosine arylamidase and the ability to metabolize certain organic acids and sugars. Both strains HAW-EB2T and HAW-EB5T utilize malate, valerate, peptone and yeast extract as sole carbon and energy sources. The major membrane fatty acids of the two strains were C14 : 0, iso-C15 : 0, C16 : 0, C16 : 1 ω7, C18 : 1 ω7 and C20 : 5 ω3 and their major quinones were Q-7, Q-8 and MK-7. On the basis of these results, strain HAW-EB2T (=NCIMB 14238T =CCUG 54553T) is proposed as the type strain of Shewanella canadensis sp. nov. and strain HAW-EB5T (=NCIMB 14239T =CCUG 54554T) is proposed as the type strain of Shewanella atlantica sp. nov.

2011 ◽  
Vol 61 (7) ◽  
pp. 1715-1719 ◽  
Author(s):  
Sang-Hoon Baek ◽  
Yingshun Cui ◽  
Sun-Chang Kim ◽  
Chang-Hao Cui ◽  
Chengri Yin ◽  
...  

A Gram-reaction-positive, rod-shaped, spore-forming bacterium, designated Gsoil 1105T, was isolated from soil of a ginseng field in Pocheon Province in South Korea and characterized in order to determine its taxonomic position. Comparative analysis of the 16S rRNA gene sequence showed that the isolate belongs to the order Bacillales, showing the highest level of sequence similarity with respect to Tumebacillus permanentifrigoris Eur1 9.5T (94.6 %). The phylogenetic distances from other described species with validly published names within the order Bacillales were greater than 9.0 %. Strain Gsoil 1105T had a genomic DNA G+C content of 55.6 mol% and menaquinone 7 (MK-7) as the major respiratory quinone. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 1105T represents a novel species of the genus Tumebacillus, for which the name Tumebacillus ginsengisoli sp. nov. is proposed. The type strain is Gsoil 1105T ( = KCTC 13942T  = DSM 18389T).


2010 ◽  
Vol 60 (1) ◽  
pp. 140-143 ◽  
Author(s):  
Eun-Jin Park ◽  
Seong Woon Roh ◽  
Min-Soo Kim ◽  
Mi-Ja Jung ◽  
Kee-Sun Shin ◽  
...  

A Gram-positive, aerobic, non-motile and coccoid actinobacterium, designated P31T, was isolated from a traditional, fermented seafood. The strain was catalase-positive and oxidase-negative. Cells grew in the presence of 0–15.0 % (w/v) NaCl, and at pH 5–10 and 15–37 °C. Major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. Strain P31T contained MK-7 as the predominant menaquinone. The DNA G+C content of the genomic DNA of strain P31T was 65.2 mol%. A phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain P31T was most closely related to Kocuria kristinae DSM 20032T, with 96.9 % similarity, and these two strains clustered together in constructed phylogenetic trees. The DNA–DNA hybridization value between strain P31T and K. kristinae DSM 20032T was 21.1 %. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, it is suggested that strain P31T represents a novel species of the genus Kocuria, for which the name Kocuria koreensis sp. nov. is proposed. The type strain is P31T (=KCTC 19595T=JCM 15915T).


2006 ◽  
Vol 56 (12) ◽  
pp. 2861-2866 ◽  
Author(s):  
Leonid N. Ten ◽  
Sang-Hoon Baek ◽  
Wan-Taek Im ◽  
Qing-Mei Liu ◽  
Zubair Aslam ◽  
...  

A Gram-positive, non-motile, endospore-forming bacterium, designated Gsoil 1517T, was isolated from soil of a ginseng field in Pocheon Province (South Korea) and was characterized in order to determine its taxonomic position, using a polyphasic approach. It was found to rod-shaped and aerobic or facultatively anaerobic. It grew optimally at 30 °C and at pH 6.5–7.0. Comparative 16S rRNA gene sequence analysis showed that strain Gsoil 1517T forms a distinct phylogenetic lineage within the genus Bacillus, being related to Bacillus funiculus JCM 11201T (96.8 %). The strain showed less than 94.3 % sequence similarity with other Bacillus species. The G+C content of the genomic DNA was found to be 47.8 mol% and the predominant respiratory quinone was MK-7. The major fatty acids were iso-C15 : 0 (42.4 %), anteiso-C15 : 0 (17.4 %), iso-C14 : 0 (9.7 %) and C16 : 0 (6.0 %). On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 1517T represents a novel species of the genus Bacillus, for which the name Bacillus panaciterrae sp. nov. is proposed. The type strain is Gsoil 1517T (=KCTC 13929T=CCUG 52470T=LMG 23408T).


2006 ◽  
Vol 56 (9) ◽  
pp. 2119-2124 ◽  
Author(s):  
Matthias Scheuermayer ◽  
Tobias A. M. Gulder ◽  
Gerhard Bringmann ◽  
Ute Hentschel

A marine bacterium, strain Pol012T, was isolated from the Mediterranean sponge Axinella polypoides and subsequently characterized as belonging to subphylum 1 of the phylum ‘Verrucomicrobia’. Strain Pol012T was non-motile, Gram-negative, coccoid or rod-shaped and red in colour. The menaquinones MK-8 and MK-9 were detected. The G+C content of the genomic DNA was 50.9 mol%. Growth was possible at temperatures between 8 and 30 °C and at pH values between 6.8 and 8.2. The closest cultured relative of strain Pol012T was Akkermansia muciniphila (83 % sequence similarity), while the closest environmental 16S rRNA gene sequence was the marine clone Arctic96BD-2 (95 % sequence similarity). Strain Pol012T is the first marine pure-culture representative of ‘Verrucomicrobia’ subphylum 1 and represents a novel genus and species, for which the name Rubritalea marina gen. nov., sp. nov. is proposed. The type strain is Pol012T (=DSM 177716T=CIP 108984T).


2007 ◽  
Vol 57 (2) ◽  
pp. 347-352 ◽  
Author(s):  
Masataka Satomi ◽  
Birte Fonnesbech Vogel ◽  
Kasthuri Venkateswaran ◽  
Lone Gram

Two novel species belonging to the genus Shewanella are described on the basis of a polyphasic taxonomic approach. A total of 40 strains of Gram-negative, psychrotolerant, H2S-producing bacteria were isolated from marine fish (cod and plaice) caught in the Baltic Sea off Denmark. Strains belonging to group 1 (seven strains) were a lactate-assimilating variant of Shewanella morhuae with a G+C content of 44 mol%. The strains of group 2 (33 strains) utilized lactate, N-acetylglucosamine and malate but did not produce DNase or ornithine decarboxylase. Their G+C content was 47 mol%. Phylogenetic analysis of the 16S rRNA gene sequence data placed the two novel species within the genus Shewanella. Group 1 showed greatest sequence similarity with S. morhuae ATCC BAA-1205T (99.9 %). However, gyrB gene sequence analysis and DNA–DNA hybridization differentiated these isolates from S. morhuae, with 95.6 % sequence similarity and less than 57 % DNA relatedness, respectively. Group 2 strains shared more than 99 % 16S rRNA gene sequence similarity with the type strains of Shewanella colwelliana and Shewanella affinis, but gyrB sequence similarity (~85 %) and the results of DNA hybridization (~28 %) indicated that the new isolates represented a novel species. Furthermore, when compared to each other, the type strains of S. colwelliana and S. affinis had almost identical gyrB sequences and significantly high DNA reassociation values (76–83 %), indicating that they belonged to the same species. Based on the conclusions of this study, we propose the novel species Shewanella glacialipiscicola sp. nov. (type strain T147T=LMG 23744T=NBRC 102030T) for group 1 strains and Shewanella algidipiscicola sp. nov. (type strain S13T=LMG 23746T=NBRC 102032T) for group 2 strains, and we propose that Shewanella affinis as a later heterotypic synonym of Shewanella colwelliana.


2010 ◽  
Vol 60 (5) ◽  
pp. 1044-1051 ◽  
Author(s):  
Nina V. Doronina ◽  
Elena N. Kaparullina ◽  
Yuri A. Trotsenko ◽  
Bernd Nörtemann ◽  
Margarete Bucheli-Witschel ◽  
...  

Two previously isolated strains (DSM 9103T and LPM-4T) able to grow with EDTA (facultatively and obligately, respectively) as the source of carbon, nitrogen and energy were investigated in order to clarify their taxonomic positions. The strains were strictly aerobic, Gram-negative, asporogenous and non-motile rods that required biotin for growth. Reproduction occurred by binary fission. The strains were mesophilic and neutrophilic. Their major fatty acids were summed feature 7 (consisting of C18 : 1 ω7c, C18 : 1 ω9t and/or C18 : 1 ω12t) and C19 : 0 cyclo ω8c. The polyamine pattern revealed homospermidine as a major polyamine. Predominant polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, phosphatidyldimethylethanolamine, phosphatidylmonomethylethanolamine and diphosphatidylglycerol. Mesorhizobium-specific ornithine lipid was absent. The predominant isoprenoid quinone was Q-10. The DNA G+C values were 60.8 and 63.1 mol% (T m) for strains LPM-4T and DSM 9103T, respectively. The level of 16S rRNA gene sequence similarity between these EDTA-utilizers was 99.3 % while the DNA–DNA hybridization value was only 37 %. Both strains were phylogenetically related to members of the genera Aminobacter and Mesorhizobium (95–97 % sequence similarity). However, DNA–DNA hybridization values between the novel EDTA-degrading strains and Aminobacter aminovorans DSM 7048T and Mesorhizobium loti DSM 2626T were low (10–11 %). Based on their genomic and phenotypic properties, the new alphaproteobacterial strains are assigned to a novel genus, Chelativorans gen. nov., with the names Chelativorans multitrophicus sp. nov. (type strain DSM 9103T=VKM B-2394T) and Chelativorans oligotrophicus sp. nov. (type strain LPM-4T=VKM B-2395T=DSM 19276T).


2006 ◽  
Vol 56 (2) ◽  
pp. 433-438 ◽  
Author(s):  
Myung Soo Park ◽  
Se Ra Jung ◽  
Kang Hyun Lee ◽  
Myung-Sook Lee ◽  
Jin Ok Do ◽  
...  

Two Gram-negative, yellow-pigmented bacteria designated PSD1-4T and PHA3-4T, isolated from two sand-dune plant species inhabiting coastal areas in Tae-an, Korea, were subjected to taxonomic investigation. 16S rRNA gene sequence analysis indicated that both isolates should be placed in the genus Chryseobacterium of the family Flavobacteriaceae. The phenotypic properties of the strains were also consistent with their classification into this genus. The levels of 16S rRNA gene sequence similarity between strain PSD1-4T and other Chryseobacterium species were 95·2–97·2 %; those between PHA3-4T and others were 93·7–97·8 %. The DNA–DNA relatedness data indicated that strains PSD1-4T and PHA3-4T were clearly different from the nearest species, Chryseobacterium indoltheticum and Chryseobacterium taichungense. The major fatty acids were 13-methyltetradecanoic acid (iso-C15 : 0), 3-hydroxy-15-methylhexadecanoic acid (iso-C17 : 0 3-OH) and omega-9-cis-15-methylhexadecenoic acid (iso-C17 : 1ω9c) for both strains. On the basis of polyphasic taxonomic analysis results, it is evident that each of these strains represents a novel species of Chryseobacterium, for which the names Chryseobacterium soldanellicola sp. nov. (type strain PSD1-4T=KCTC 12382T=NBRC 100864T) and Chryseobacterium taeanense sp. nov. (type strain PHA3-4T=KCTC 12381T=NBRC 100863T) are proposed.


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4544-4549 ◽  
Author(s):  
Fatemeh Mohammadipanah ◽  
Javad Hamedi ◽  
Peter Schumann ◽  
Cathrin Spröer ◽  
María del Carmen Montero-Calasanz ◽  
...  

A novel actinomycete, designated HM 537T, was isolated from soil in Hamedan Province, Iran. Cell-wall hydrolysates of strain HM 537T contained meso-diaminopimelic acid, and whole-cell hydrolysates contained ribose, glucose, galactose, rhamnose and traces of mannose. The main phospholipids were diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylinositol and an unknown phospholipid. MK-9(H4), an unknown MK and MK-10(H4) were the predominant menaquinones. The major fatty acids included iso-C16 : 0, iso-C15 : 0, iso-C16 : 1 G and 9(?)-methyl C16 : 0. Strain HM 537T had the highest 16S rRNA gene sequence similarity to Saccharothrix hoggarensis DSM 45457T (99.5 %) and Saccharothrix saharensis DSM 45456T (99.0 %). DNA–DNA hybridization studies showed relatedness values of 13.8 ± 3.3 % with S. hoggarensis DSM 45457T and 16.3 ± 3.5 % with S. saharensis DSM 45456T. Based on the results of phenotypic and genotypic studies, strain HM 537T represents a novel species of the genus Saccharothrix, for which the name Saccharothrix ecbatanensis sp. nov. is proposed. The type strain is HM 537T ( = DSM 45486T = UTMC 00537T = CCUG 63021T).


2011 ◽  
Vol 61 (10) ◽  
pp. 2464-2468 ◽  
Author(s):  
Sang-Hoon Baek ◽  
Ju Hyoung Lim ◽  
Long Jin ◽  
Hyung-Gwan Lee ◽  
Sung-Taik Lee

A yellow-pigmented, Gram-negative, short rod-shaped, non-motile and non-spore-forming bacterial strain, designated HU1-AH51T, was isolated from freshwater sediment and was characterized using a polyphasic approach, in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity, strain HU1-AH51T was shown to belong to the genus Novosphingobium, showing the highest level of sequence similarity with respect to Novosphingobium resinovorum NCIMB 8767T (96.0 %), Novosphingobium naphthalenivorans TUT562T (96.0 %) and Novosphingobium panipatense SM16T (96.0 %). Strain HU1-AH51T had a genomic DNA G+C content of 62.6 mol% and Q-10 as the predominant respiratory quinone. Furthermore, the major polyamine component (spermidine) in the cytoplasm and the presence of sphingoglycolipids suggested that strain HU1-AH51T belongs to the family Sphingomonadaceae. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain HU1-AH51T represents a novel species of the genus Novosphingobium, for which the name Novosphingobium sediminicola sp. nov. is proposed. The type strain is HU1-AH51T ( = LMG 24320T  = KCTC 22311T).


2011 ◽  
Vol 61 (8) ◽  
pp. 1817-1822 ◽  
Author(s):  
Xue-Wei Xu ◽  
Ying-Yi Huo ◽  
Chun-Sheng Wang ◽  
Aharon Oren ◽  
Heng-Lin Cui ◽  
...  

Two Gram-negative, motile, aerobic bacterial strains, designated B2T and 1_C16_27T, were respectively isolated from a seawater sample collected from the East China Sea and a semi-coke sample from north-eastern Estonia. Their genetic, phenotypic and chemotaxonomic properties were studied. The isolates were short rods with polar flagella and were positive for catalase and oxidase activities. Q-10 was the predominant respiratory ubiquinone. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol and two unidentified glycolipids. The major fatty acids were nonadecanoic (C19 : 0 cyclo), octadecanoic (C18 : 0 and C18 : 0 3-OH), octadecenoic (C18 : 1) and hexadecanoic (C16 : 0) acids. The G+C content of the genomic DNA was 58.1–59.3 mol%. 16S rRNA gene sequence analysis revealed that the two isolates represent a distinct lineage within the family Hyphomicrobiaceae. The phylogenetically closest relatives were Cucumibacter (92.7–93.7 % 16S rRNA gene sequence similarity), Devosia (92.9–94.4 %) and Zhangella (91.7–92.1 %). Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strains B2T and 1_C16_27T could be differentiated from each other and from members of the genera Cucumibacter, Devosia and Zhangella. Therefore, it is proposed that strains B2T and 1_C16_27T represent two novel species in a new genus, for which the names Pelagibacterium halotolerans gen. nov., sp. nov. (the type species; type strain B2T  = CGMCC 1.7692T  = JCM 15775T) and Pelagibacterium luteolum sp. nov. (type strain 1_C16_27T  = CGMCC 1.10267T  = JCM 16552T  = CELMS EEUT 1C1627T) are proposed.


Sign in / Sign up

Export Citation Format

Share Document