scholarly journals Bacillus panaciterrae sp. nov., isolated from soil of a ginseng field

2006 ◽  
Vol 56 (12) ◽  
pp. 2861-2866 ◽  
Author(s):  
Leonid N. Ten ◽  
Sang-Hoon Baek ◽  
Wan-Taek Im ◽  
Qing-Mei Liu ◽  
Zubair Aslam ◽  
...  

A Gram-positive, non-motile, endospore-forming bacterium, designated Gsoil 1517T, was isolated from soil of a ginseng field in Pocheon Province (South Korea) and was characterized in order to determine its taxonomic position, using a polyphasic approach. It was found to rod-shaped and aerobic or facultatively anaerobic. It grew optimally at 30 °C and at pH 6.5–7.0. Comparative 16S rRNA gene sequence analysis showed that strain Gsoil 1517T forms a distinct phylogenetic lineage within the genus Bacillus, being related to Bacillus funiculus JCM 11201T (96.8 %). The strain showed less than 94.3 % sequence similarity with other Bacillus species. The G+C content of the genomic DNA was found to be 47.8 mol% and the predominant respiratory quinone was MK-7. The major fatty acids were iso-C15 : 0 (42.4 %), anteiso-C15 : 0 (17.4 %), iso-C14 : 0 (9.7 %) and C16 : 0 (6.0 %). On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 1517T represents a novel species of the genus Bacillus, for which the name Bacillus panaciterrae sp. nov. is proposed. The type strain is Gsoil 1517T (=KCTC 13929T=CCUG 52470T=LMG 23408T).

2011 ◽  
Vol 61 (7) ◽  
pp. 1715-1719 ◽  
Author(s):  
Sang-Hoon Baek ◽  
Yingshun Cui ◽  
Sun-Chang Kim ◽  
Chang-Hao Cui ◽  
Chengri Yin ◽  
...  

A Gram-reaction-positive, rod-shaped, spore-forming bacterium, designated Gsoil 1105T, was isolated from soil of a ginseng field in Pocheon Province in South Korea and characterized in order to determine its taxonomic position. Comparative analysis of the 16S rRNA gene sequence showed that the isolate belongs to the order Bacillales, showing the highest level of sequence similarity with respect to Tumebacillus permanentifrigoris Eur1 9.5T (94.6 %). The phylogenetic distances from other described species with validly published names within the order Bacillales were greater than 9.0 %. Strain Gsoil 1105T had a genomic DNA G+C content of 55.6 mol% and menaquinone 7 (MK-7) as the major respiratory quinone. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 1105T represents a novel species of the genus Tumebacillus, for which the name Tumebacillus ginsengisoli sp. nov. is proposed. The type strain is Gsoil 1105T ( = KCTC 13942T  = DSM 18389T).


2006 ◽  
Vol 56 (9) ◽  
pp. 2031-2036 ◽  
Author(s):  
Kyoung-Ho Kim ◽  
Leonid N. Ten ◽  
Qing-Mei Liu ◽  
Wan-Taek Im ◽  
Sung-Taik Lee

A Gram-negative, strictly aerobic, rod-shaped, non-motile, non-spore-forming bacterial strain, designated TR6-04T, was isolated from compost and characterized taxonomically by using a polyphasic approach. The organism grew optimally at 30 °C and at pH 6.5–7.0. The isolate was positive for catalase and oxidase tests but negative for gelatinase, indole and H2S production. Comparative 16S rRNA gene sequence analysis showed that strain TR6-04T fell within the radiation of the cluster comprising Sphingobacterium species and clustered with Sphingobacterium mizutaii ATCC 33299T (96.7 % sequence similarity); the similarity to sequences of other species within the family Sphingobacteriaceae was less than 92.0 %. The G+C content of the genomic DNA was 38.7 mol%. The predominant respiratory quinone was MK-7. The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 4 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c). These chemotaxonomic data supported the affiliation of strain TR6-04T to the genus Sphingobacterium. However, on the basis of its phenotypic properties and phylogenetic distinctiveness, strain TR6-04T (=KCTC 12579T=LMG 23402T=CCUG 52468T) should be classified as the type strain of a novel species, for which the name Sphingobacterium daejeonense sp. nov. is proposed.


2011 ◽  
Vol 61 (10) ◽  
pp. 2464-2468 ◽  
Author(s):  
Sang-Hoon Baek ◽  
Ju Hyoung Lim ◽  
Long Jin ◽  
Hyung-Gwan Lee ◽  
Sung-Taik Lee

A yellow-pigmented, Gram-negative, short rod-shaped, non-motile and non-spore-forming bacterial strain, designated HU1-AH51T, was isolated from freshwater sediment and was characterized using a polyphasic approach, in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity, strain HU1-AH51T was shown to belong to the genus Novosphingobium, showing the highest level of sequence similarity with respect to Novosphingobium resinovorum NCIMB 8767T (96.0 %), Novosphingobium naphthalenivorans TUT562T (96.0 %) and Novosphingobium panipatense SM16T (96.0 %). Strain HU1-AH51T had a genomic DNA G+C content of 62.6 mol% and Q-10 as the predominant respiratory quinone. Furthermore, the major polyamine component (spermidine) in the cytoplasm and the presence of sphingoglycolipids suggested that strain HU1-AH51T belongs to the family Sphingomonadaceae. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain HU1-AH51T represents a novel species of the genus Novosphingobium, for which the name Novosphingobium sediminicola sp. nov. is proposed. The type strain is HU1-AH51T ( = LMG 24320T  = KCTC 22311T).


2010 ◽  
Vol 60 (11) ◽  
pp. 2577-2582 ◽  
Author(s):  
Myungjin Lee ◽  
Sung-Geun Woo ◽  
Joonhong Park ◽  
Soon-Ae Yoo

A Gram-negative, non-motile, aerobic bacterial strain, designated MJ20T, was isolated from farm soil near Daejeon (South Korea) and was characterized taxonomically by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain MJ20T belongs to the family Cytophagaceae, class Sphingobacteria, and was related most closely to Dyadobacter fermentans DSM 18053T (98.9 % sequence similarity), Dyadobacter beijingensis JCM 14200T (98.0 %) and Dyadobacter ginsengisoli KCTC 12589T (96.4 %). The G+C content of the genomic DNA of strain MJ20T was 48.5 mol%. The detection of MK-7 as the predominant menaquinone and a fatty acid profile with summed feature 4 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH), iso-C15 : 0, C16 : 0 and C16 : 1 ω5c as major components supported the affiliation of strain MJ20T to the genus Dyadobacter. The new isolate exhibited relatively low levels of DNA–DNA relatedness with respect to D. fermentans DSM 18053T (mean±sd of three determinations, 47±7 %) and D. beijingensis JCM 14200T (38±8 %). On the basis of its phenotypic and genotypic properties together with phylogenetic distinctiveness, strain MJ20T (=KCTC 22481T =JCM 16232T) should be classified in the genus Dyadobacter as the type strain of a novel species, for which the name Dyadobacter soli sp. nov. is proposed.


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4868-4872 ◽  
Author(s):  
Yan Zhao ◽  
Qingmei Liu ◽  
Myung-Suk Kang ◽  
Fengxie Jin ◽  
Hongshan Yu ◽  
...  

A Gram-reaction-negative, aerobic, non-motile and rod-shaped bacterial strain designated Gsoil 636T was isolated from soil of a ginseng cultivation field in Pocheon Province, South Korea and its taxonomic position was investigated using a polyphasic approach. Gsoil 636T grew at 18–30 °C and at pH 6.0–8.0 on R2A medium. Gsoil 636T possessed β-glucosidase activity, which was responsible for its ability to transform ginsenoside Rb1 (ones of the dominant active components of ginseng) to F2. On the basis of 16S rRNA gene sequence similarity, Gsoil 636T was shown to belong to the family Chitinophagaceae and to be related to Flavisolibacter ginsengiterrae Gsoil 492T (96.7 % sequence similarity), Flavisolibacter ginsengisoli Gsoil 643T (96.6 %) and Flavisolibacter rigui 02SUJ3T (96.6 %). The G+C content of the genomic DNA was 48.9 %. The predominant respiratory quinone was MK-7 and the major fatty acids were iso-C15 : 0, summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c) and iso-C17 : 0 3-OH. DNA and chemotaxonomic data supported the affiliation of Gsoil 636T to the genus Flavisolibacter. Gsoil 636T could be differentiated genotypically and phenotypically from the species of the genus Flavisolibacter with validly published names. The isolate therefore represents a novel species, for which the name Flavisolibacter ginsenosidimutans sp. nov. is proposed, with the type strain Gsoil 636T (KCTC 22818T = JCM 18197T = KACC 14277T).


Author(s):  
Rangasamy Anandham ◽  
Pandiyan Indiragandhi ◽  
Soon Wo Kwon ◽  
Tong Min Sa ◽  
Che Ok Jeon ◽  
...  

A facultatively chemolithoautotrophic, thiosulfate-oxidizing, Gram-negative, aerobic, motile, rod-shaped bacterial strain, designated ATSB16T, was isolated from rhizosphere soils of sesame (Sesamum indicum L.). 16S rRNA gene sequence analysis demonstrated that this strain was closely related to Pandoraea pnomenusa LMG 18087T (96.7 % similarity), P. pulmonicola LMG 18016T (96.5 %), P. apista LMG 16407T (96.2 %), P. norimbergensis LMG 18379T (96.1 %) and P. sputorum LMG 18819T (96.0 %). Strain ATSB16T shared 96.0–96.4 % sequence similarity with four unnamed genomospecies of Pandoraea. The major cellular fatty acids of the strain ATSB16T were C17 : 0 cyclo (33.0 %) and C16 : 0 (30.6 %). Q-8 was the predominant respiratory quinone. The major polar lipids were phosphatidylmethylethanolamine, diphosphatidylglycerol, phosphatidylethanolamine and two unidentified aminophospholipids. Hydroxyputrescine and putrescine were the predominant polyamines. The genomic DNA G+C content of the strain was 64.0 mol%. On the basis of the results obtained from this study, strain ATSB16T represents a novel species of the genus Pandoraea, for which the name Pandoraea thiooxydans sp. nov. is proposed. The type strain is ATSB16T (=KACC 12757T =LMG 24779T).


2010 ◽  
Vol 60 (8) ◽  
pp. 1844-1848 ◽  
Author(s):  
Teresa Lucena ◽  
Javier Pascual ◽  
Esperanza Garay ◽  
David R. Arahal ◽  
M. Carmen Macián ◽  
...  

Strain 7SM29T, an aerobic marine gammaproteobacterium isolated from seawater from Castellón, Spain, was characterized by classical phenotyping, chemotaxonomy and 16S rRNA gene sequence analysis. Strain 7SM29T was found to be closely related to strains in the genus Haliea and to Congregibacter litoralis KT71T, with which a genus-level cluster was formed within the NOR5/OM60 clade of the Gammaproteobacteria. Strain 7SM29T was a short, motile rod with a tuft of three polar flagella. The strain grew on marine agar and formed pale-yellow colonies. Strain 7SM29T required NaCl for growth, reduced nitrate to nitrite, degraded several polymers and showed a preference for organic acids and amino acids over carbohydrates as carbon and energy sources. Strain 7SM29T contained Q-8 as the sole respiratory quinone. The DNA G+C content was 62.1 mol%. Phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine were the major polar lipids. The major cellular fatty acids were unsaturated C16–C18 compounds. On the basis of extensive phenotypic and phylogenetic comparative analysis, it is concluded that the strain represents a novel species of the genus Haliea, for which the name Haliea mediterranea sp. nov. is proposed. The type strain is 7SM29T (=CECT 7447T =DSM 21924T).


2004 ◽  
Vol 54 (6) ◽  
pp. 1987-1990 ◽  
Author(s):  
Raúl Rivas ◽  
Martha E. Trujillo ◽  
Pedro F. Mateos ◽  
Eustoquio Martínez-Molina ◽  
Encarna Velázquez

Two xylan-degrading bacterial strains were isolated from a decayed Ulmus nigra tree in Spain. The isolates were Gram-positive, non-motile, aerobic and formed substrate mycelium which fragmented into irregular rods. 16S rRNA gene sequence analysis indicated that the isolates form a separate branch within the genus Agromyces phylogenetic cluster, with Agromyces mediolanus DSM 20152T being their closest relative (97·7 and 97·6 % sequence similarity). Catalase, nitrate reduction and urease tests differentiated these strains from A. mediolanus. Cell-wall peptidoglycan composition, major menaquinone, predominant fatty acids and phospholipid pattern were typical of the genus Agromyces. The DNA G+C content determined for the type strain XIL01T was 72 mol%. Based on the data presented, a novel species Agromyces ulmi sp. nov. is proposed. The type strain is XIL01T (=LMG 21954T=DSM 15747T).


2006 ◽  
Vol 56 (11) ◽  
pp. 2583-2585 ◽  
Author(s):  
Valme Jurado ◽  
Juan M. Gonzalez ◽  
Leonila Laiz ◽  
Cesareo Saiz-Jimenez

A bacterial strain, S21BT, was isolated from Altamira Cave (Cantabria, Spain). The cells were Gram-negative, short rods growing aerobically. Comparative 16S rRNA gene sequence analysis revealed that strain S21BT represented a separate subline of descent within the family ‘Aurantimonadaceae’ (showing 96 % sequence similarity to Aurantimonas coralicida) in the order Rhizobiales (Alphaproteobacteria). The major fatty acids detected were C16 : 0 and C18 : 1 ω7c. The G+C content of the DNA from strain S21BT was 71.8 mol%. Oxidase and catalase activities were present. Strain S21BT utilized a wide range of substrates for growth. On the basis of the results of this polyphasic study, isolate S21BT represents a novel species of the genus Aurantimonas, for which the name Aurantimonas altamirensis sp. nov. is proposed. The type strain is S21BT (=CECT 7138T=LMG 23375T).


2006 ◽  
Vol 56 (5) ◽  
pp. 1085-1088 ◽  
Author(s):  
Soon Dong Lee

A novel actinomycete, strain N3-7T, was isolated from a natural cave in Jeju, Republic of Korea, using a dilution method and was subjected to characterization using polyphasic taxonomy. A 16S rRNA gene sequence analysis revealed that the organism belonged to the phylogenetic cluster of the genus Actinocorallia and was most closely related to Actinocorallia glomerata and Actinocorallia longicatena (97.6 and 97.5 % similarity, respectively). The main chemotaxonomic properties of strain N3-7T, such as the principal amino acid of the peptidoglycan, the predominant menaquinone and the polar lipid profile, supported classification in the genus Actinocorallia. The organism was readily differentiated from Actinocorallia species with validly published names on the basis of a broad range of phenotypic properties. Thus the isolate represents a novel species of the genus Actinocorallia, for which the name Actinocorallia cavernae sp. nov. is proposed. The type strain is strain N3-7T (=JCM 13278T=NRRL B-24429T).


Sign in / Sign up

Export Citation Format

Share Document