scholarly journals Prevotella paludivivens sp. nov., a novel strictly anaerobic, Gram-negative, hemicellulose-decomposing bacterium isolated from plant residue and rice roots in irrigated rice-field soil

2007 ◽  
Vol 57 (8) ◽  
pp. 1803-1809 ◽  
Author(s):  
Atsuko Ueki ◽  
Hiroshi Akasaka ◽  
Atsuya Satoh ◽  
Daisuke Suzuki ◽  
Katsuji Ueki

Two strictly anaerobic bacterial strains, KB7T and A42, were isolated from rice plant residue and living rice roots, respectively, from irrigated rice-field soil in Japan. These two strains were closely related to each other with 16S rRNA gene sequence similarity of 99.8 %. Both strains showed almost the same physiological properties. Cells were Gram-negative, non-motile, non-spore-forming rods. Growth was remarkably stimulated by the addition of haemin to the medium. The strains utilized various saccharides including xylan, xylose, pectin and carboxymethylcellulose and produced acetate and succinate with small amounts of formate and malate. The strains grew at 10–40 °C; optimum growth was observed at 30 °C and pH 5.7–6.7. Oxidase, catalase and nitrate-reducing activities were not detected. Aesculin was hydrolysed. The major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0, C15 : 0 and iso-C17 : 0 3-OH. Menaquinones MK-11 and MK-11(H2) were the major respiratory quinones and the genomic DNA G+C content was 39.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences placed both strains in the phylum Bacteroidetes. 16S rRNA gene sequence analysis showed that the most related species to both strains was Prevotella oulorum (92.8–92.9 % similarity). Prevotella veroralis and Prevotella melaninogenica were the next most closely related known species with sequence similarities of 91.9–92.4 %. Based on differences in the phylogenetic, ecological, physiological and chemotaxonomic characteristics between the two isolates and related species, it is proposed that strains KB7T and A42 represent a novel species, Prevotella paludivivens sp. nov. This is the first described Prevotella species derived from a natural habitat; all other Prevotella species are from mammalian sources. The type strain of Prevotella paludivivens is KB7T (=JCM 13650T=DSM 17968T).

2006 ◽  
Vol 56 (9) ◽  
pp. 2215-2221 ◽  
Author(s):  
Atsuko Ueki ◽  
Hiroshi Akasaka ◽  
Daisuke Suzuki ◽  
Satoshi Hattori ◽  
Katsuji Ueki

A strictly anaerobic, xylanolytic bacterium, strain KB3T, isolated from rice-plant residue in flooded anoxic rice-field soil in Japan, was characterized phenotypically and phylogenetically. Cells were Gram-negative, non-motile, non-spore-forming, short to filamentous rods. Growth of the strain was remarkably stimulated by the addition of haemin to the medium. The novel strain utilized various sugars including xylan, xylose, pectin and carboxymethylcellulose and produced acetate, propionate and succinate with a small amount of malate. Propionate production was stimulated by the addition of a B-vitamin mixture or cobalamin to the medium. The novel strain was slightly acidophilic with an optimum pH 5.7–6.2 and the optimum growth temperature was 30 °C. Oxidase, catalase and nitrate-reducing activities were negative. Aesculin was hydrolysed. The major cellular fatty acids were anteiso-C15 : 0 and iso-3-OH C17 : 0. The major respiratory quinones were menaquinones MK-12(H2) and MK-13(H2). The genomic DNA G+C content was 43.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequence placed the strain in the phylum Bacteroidetes. The closest related species was Prevotella bivia with a 16S rRNA gene sequence similarity of 89.5 %. Prevotella albensis and Prevotella oulorum were the next closest recognized species with sequence similarities of 89.1 %. Based on a comprehensive examination of the differences in phylogenetic, ecological, physiological and chemotaxonomic characteristics of strain KB3T and those of related species, a novel genus and species, Xylanibacter oryzae gen. nov., sp. nov., is proposed to accommodate strain KB3T. The type strain of the novel species is KB3T (=JCM 13648T=DSM 17970T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3965-3970 ◽  
Author(s):  
Estelle Jumas-Bilak ◽  
Philippe Bouvet ◽  
Emma Allen-Vercoe ◽  
Fabien Aujoulat ◽  
Paul A. Lawson ◽  
...  

Five human clinical isolates of an unknown, strictly anaerobic, slow-growing, Gram-stain-negative, rod-shaped micro-organism were subjected to a polyphasic taxonomic study. Comparative 16S rRNA gene sequence-based phylogeny showed that the isolates grouped in a clade that included members of the genera Pyramidobacter, Jonquetella, and Dethiosulfovibrio; the type strain of Pyramidobacter piscolens was the closest relative with 91.5–91.7 % 16S rRNA gene sequence similarity. The novel strains were mainly asaccharolytic and unreactive in most conventional biochemical tests. Major metabolic end products in trypticase/glucose/yeast extract broth were acetic acid and propionic acid and the major cellular fatty acids were C13 : 0 and C16 : 0, each of which could be used to differentiate the strains from P. piscolens. The DNA G+C content based on whole genome sequencing for the reference strain 22-5-S 12D6FAA was 57 mol%. Based on these data, a new genus, Rarimicrobium gen. nov., is proposed with one novel species, Rarimicrobium hominis sp. nov., named after the exclusive and rare finding of the taxon in human samples. Rarimicrobium is the fifth genus of the 14 currently characterized in the phylum Synergistetes and the third one in subdivision B that includes human isolates. The type strain of Rarimicrobium hominis is ADV70T ( = LMG 28163T = CCUG 65426T).


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1296-1303 ◽  
Author(s):  
Haruka Horino ◽  
Takashi Fujita ◽  
Akio Tonouchi

An obligately anaerobic bacterial strain designated T-1-35T was isolated as a dominant cultivable cellulose-degrading bacterium from soil of a Japanese rice field as an anaerobic filter-paper degrader. Cells of strain T-1-35T stained Gram-positive and were non-spore-forming rods with rounded ends, 0.8–1.0×3.5–15.0 µm, and motile by means of two to four polar flagella. Cells of strain T-1-35T exhibited pleomorphism: in aged cultures (over 90 days of incubation), almost all cells were irregularly shaped. Although no spore formation was observed, cells tolerated high temperatures, up to 90 °C for 10 min. The temperature range for growth was 15–40 °C, with an optimum at 35 °C. The pH range for growth was 5.5–9.0, with an optimum at pH 8.0–8.5 (slightly alkaliphilic). Strain T-1-35T fermented some carbohydrates to produce ethanol and lactate as the major products. Major cellular fatty acids were iso-C16 : 0 and iso-C13 : 0 3-OH. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain T-1-35T belonged to Clostridium rRNA cluster III. The closest relative of strain T-1-35T was Bacteroides cellulosolvens WM2T, with 16S rRNA gene sequence similarity of 93.4 %. Phenotypic, physiological and molecular genetic methods demonstrated that strain T-1-35T was distinct from its phylogenetic relatives (members of Clostridium rRNA cluster III) because it predominantly produced ethanol, iso-C13 : 0 3-OH was a major cellular fatty acid and it always exhibited pleomorphism. On the basis of the results of a polyphasic taxonomic study, strain T-1-35T is considered to represent a novel genus and species, Anaerobacterium chartisolvens gen. nov., sp. nov. The type strain of Anaerobacterium chartisolvens is T-1-35T ( = DSM 27016T = NBRC 109520T). In addition, from the results of our phylogenetic analysis and its phenotypic features, the species Bacteroides cellulosolvens Murray et al. 1984 is proposed to be reclassified in the new genus Pseudobacteroides as Pseudobacteroides cellulosolvens gen. nov., comb. nov., with the type strain WM2T ( = ATCC 35603T = DSM 2933T = NRCC 2944T).


2004 ◽  
Vol 54 (5) ◽  
pp. 1465-1468 ◽  
Author(s):  
Hyunyoung Jeong ◽  
Hana Yi ◽  
Yuji Sekiguchi ◽  
Mizuho Muramatsu ◽  
Yoichi Kamagata ◽  
...  

A strictly anaerobic, mesophilic, endospore-forming bacterium, designated strain HY-35-12T, was isolated from a soil sample in Jeju, Korea. Cells of this isolate were Gram-positive, motile rods that formed oval to spherical terminal spores. Strain HY-35-12T grew optimally at 30 °C, pH 7·0 and 0–0·5 % (w/v) NaCl. The isolate produced pyruvate, lactate, acetate, formate and hydrogen as fermentation end products from glucose. The G+C content of DNA of the isolate was 41 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the organism formed a monophyletic clade with Clostridium xylanovorans and Clostridium aminovalericum in cluster XIVa of the genus Clostridium. The closest phylogenetic neighbour was C. xylanovorans, with 96·65 % 16S rRNA gene sequence similarity. Several physiological and chemotaxonomic properties were identified that enable strain HY-35-12T to be distinguished from phylogenetically related clostridia. On the basis of polyphasic characteristics, it is proposed that strain HY-35-12T (=IMSNU 40003T=KCTC 5026T=DSM 15929T) represents a novel species, Clostridium jejuense sp. nov.


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2442-2449 ◽  
Author(s):  
Prabla Kumari ◽  
Saumya Bandyopadhyay ◽  
Subrata K. Das

A novel aerobic soil actinobacterium (strain MB10T) belonging to the genus Microbacterium was isolated from rice field soil samples collected from Jagatpur, Orissa, India. Cells were Gram-stain positive, short rod-shaped and motile. The strain was oxidase-negative and catalase-positive. Heterotrophic growth was observed at pH 5.0–11.0 and at 16–37 °C; optimum growth was observed at 28 °C and pH 7.0–9.0. The DNA G+C content was 71.6 mol%. Predominant cellular fatty acids of strain MB10T were iso-C14 : 0, anteiso-C15 : 0, C16 : 0, iso-C16 : 0 and anteiso-C17 : 0. Cell wall sugars were galactose, glucose and rhamnose. The major isoprenoid quinones were MK-9 (10 %), MK-10 (43 %) and MK-11 (36 %). The peptidoglycan represents the peptidoglycan type B2β. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phospholipid and unknown glycolipids. 16S rRNA gene sequence identity revealed the strain MB10T clustered within the radiation of the genus Microbacterium and showed 99.2 % similarity with Microbacterium barkeri DSM 20145T. However, DNA–DNA similarity study was 37.0 % with Microbacterium barkeri DSM 20145T, the nearest phylogenetic relative. On the basis of phenotypic and chemotaxonomic properties, 16S rRNA gene sequence analysis and DNA–DNA reassociation studies, it is proposed that strain MB10T represents a novel species of the genus Microbacterium , for which the name Microbacterium oryzae sp. nov. is proposed; the type strain is MB10T ( = JCM 16837T = DSM 23396 T ).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3522-3526 ◽  
Author(s):  
Yu Deng ◽  
Xiang Guo ◽  
Yanwei Wang ◽  
Mingxiong He ◽  
Kedong Ma ◽  
...  

A Gram-staining-positive, spore-forming, strictly anaerobic bacterium, designated strain LAM0A37T, was isolated from enrichment samples collected from a petroleum reservoir in Shengli oilfield. Cells of strain LAM0A37T were rod-shaped and motile by peritrichous flagella. The optimal temperature and pH for growth were 40 °C and 7.0–7.5, respectively. The strain did not require NaCl for growth but tolerated up to 3 % (w/v) NaCl. Strain LAM0A37T was able to utilize glucose, fructose, maltose, xylose, sorbitol, cellobiose, melibiose and melezitose as sole carbon sources. Sulfite was used as an electron acceptor. The main products of glucose fermentation were acetate and CO2. The predominant fatty acid was C16 : 0 (23.6 %). The main polar lipid profile comprised of five glycolipids, six phospholipids and two lipids. No menaquinone was detected. The genomic DNA G+C content was 27.1 ± 0.2 mol% as determined by the T m method. Analysis of the 16S rRNA gene sequence indicated that the isolate was a member of the genus Terrisporobacter, and was most closely related to Terrisporobacter glycolicus JCM 1401T and Terrisporobacter mayombei DSM 6539T with 98.3 % 16S rRNA gene sequence similarity to both. DNA–DNA hybridization values between strain LAM0A37T and type strains of Terrisporobacter glycolicus and Terrisporobacter mayombei were 45.6 ± 0.3 % and 38.3 ± 0.4 %, respectively. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM0A37T is suggested to represent a novel species of the genus Terrisporobacter, for which the name Terrisporobacter petrolearius sp. nov. is proposed. The type strain is LAM0A37T ( = ACCC 00740T = JCM 19845T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1714-1718 ◽  
Author(s):  
Xiang Zeng ◽  
Zhao Zhang ◽  
Xi Li ◽  
Mohamed Jebbar ◽  
Karine Alain ◽  
...  

A thermophilic, anaerobic, iron-reducing bacterium (strain DY22619T) was isolated from a sulfide sample collected from an East Pacific Ocean hydrothermal field at a depth of 2901 m. Cells were Gram-stain-negative, motile rods (2–10 µm in length, 0.5 µm in width) with multiple peritrichous flagella. The strain grew at 40–70 °C inclusive (optimum 60 °C), at pH 4.5–8.5 inclusive (optimum pH 7.0) and with sea salts concentrations of 1–10 % (w/v) (optimum 3 % sea salts) and NaCl concentrations of 1.5–5.0 % (w/v) (optimum 2.5 % NaCl). Under optimal growth conditions, the generation time was around 55 min. The isolate was an obligate chemoorganoheterotroph, utilizing complex organic compounds, amino acids, carbohydrates and organic acids including peptone, tryptone, beef extract, yeast extract, alanine, glutamate, methionine, threonine, fructose, mannose, galactose, glucose, palatinose, rhamnose, turanose, gentiobiose, xylose, sorbose, pyruvate, tartaric acid, α-ketobutyric acid, α-ketovaleric acid, galacturonic acid and glucosaminic acid. Strain DY22619T was strictly anaerobic and facultatively dependent on various forms of Fe(III) as an electron acceptor: insoluble forms and soluble forms. It did not reduce sulfite, sulfate, thiosulfate or nitrate. The genomic DNA G+C content was 29.0 mol%. Phylogenetic 16S rRNA gene sequence analyses revealed that the closest relative of strain DY22619T was Caloranaerobacter azorensis MV1087T, sharing 97.41 % 16S rRNA gene sequence similarity. On the basis of physiological distinctness and phylogenetic distance, the isolate is considered to represent a novel species of the genus Caloranaerobacter , for which the name Caloranaerobacter http://dx.doi.org/10.1601/nm.4081 ferrireducens sp. nov. is proposed. The type strain is DY22619T ( = JCM 19467T = DSM 27799T = MCCC1A06455T).


2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1718-1723 ◽  
Author(s):  
Yan-Ling Qiu ◽  
Xiao-zhu Kuang ◽  
Xiao-shuang Shi ◽  
Xian-zheng Yuan ◽  
Rong-bo Guo

A strictly anaerobic, mesophilic, carbohydrate-fermenting bacterium, designated NM-5T, was isolated from a rice paddy field. Cells of strain NM-5T were Gram-stain-negative, non-motile, non-spore-forming, short rods (0.5–0.7 µm×0.6–1.2 µm). The strain grew optimally at 37 °C (growth range 20–40 °C) and pH 7.0 (pH 5.5–8.0). The strain could grow fermentatively on arabinose, xylose, fructose, galactose, glucose, ribose, mannose, cellobiose, lactose, maltose and sucrose. The main end-products of glucose fermentation were acetate and propionate. Organic acids, alcohols and amino acids were not utilized for growth. Yeast extract was not required but stimulated the growth. Nitrate, sulfate, thiosulfate, elemental sulfur, sulfite, and Fe (III) nitrilotriacetate were not used as terminal electron acceptors. The DNA G+C content was 46.3 mol%. The major cellular fatty acids were iso-C14 : 0, C18 : 0 and C16 : 0. 16S rRNA gene sequence analysis revealed that strain NM-5T belongs to the class ‘S partobacteria’, subdivision 2 of the bacterial phylum Verrucomicrobia . Phylogenetically, the closest species was ‘Chthoniobacter flavus’ (89.6 % similarity in 16S rRNA gene sequence). A novel genus and species, Terrimicrobium sacchariphilum gen. nov., sp. nov., is proposed. The type strain of the type species is NM-5T ( = JCM 17479T = CGMCC 1.5168T).


2006 ◽  
Vol 56 (4) ◽  
pp. 691-693 ◽  
Author(s):  
Seil Kim ◽  
Hyunyoung Jeong ◽  
Sanggoo Kim ◽  
Jongsik Chun

A Gram-negative, strictly anaerobic, halophilic, motile, sporulating and rod-shaped bacterium, designated strain HY-42-06T, was isolated from tidal flat sediment from Ganghwa Island in South Korea. The isolate produced glycerol, ethanol and CO2 as fermentation end-products from glucose. Strain HY-42-06T grew optimally at 35 °C, pH 7·5 and 3 % (w/v) artificial sea salts. No growth was observed in the absence of sea salts. In phylogenetic analyses based on 16S rRNA gene sequence, strain HY-42-06T showed a distinct phyletic line within the members of cluster I of the order Clostridiales. The closest phylogenetic neighbour to strain HY-42-06T was Clostridium novyi ATCC 17861T (94·91 % 16S rRNA gene sequence similarity). Several phenotypic characters readily differentiate the tidal flat isolate from phylogenetically related clostridia. On the basis of polyphasic evidence, strain HY-42-06T should be classified as a representative of a novel species, for which the name Clostridium ganghwense sp. nov. is proposed. The type strain is HY-42-06T (=IMSNU 40127T=KCTC 5146T=JCM 13193T).


2012 ◽  
Vol 62 (1) ◽  
pp. 138-143 ◽  
Author(s):  
Christophe Chassard, ◽  
Eve Delmas, ◽  
Céline Robert, ◽  
Paul A. Lawson ◽  
Annick Bernalier-Donadille

A strictly anaerobic, cellulolytic strain, designated 18P13T, was isolated from a human faecal sample. Cells were Gram-positive non-motile cocci. Strain 18P13T was able to degrade microcrystalline cellulose but the utilization of soluble sugars was restricted to cellobiose. Acetate and succinate were the major end products of cellulose and cellobiose fermentation. 16S rRNA gene sequence analysis revealed that the isolate belonged to the genus Ruminococcus of the family Ruminococcaceae. The closest phylogenetic relative was the ruminal cellulolytic strain Ruminococcus flavefaciens ATCC 19208T (<95 % 16S rRNA gene sequence similarity). The DNA G+C content of strain 18P13T was 53.05±0.7 mol%. On the basis of phylogenetic analysis, and morphological and physiological data, strain 18P13T can be differentiated from other members of the genus Ruminococcus with validly published names. The name Ruminococcus champanellensis sp. nov. is proposed, with 18P13T ( = DSM 18848T = JCM 17042T) as the type strain.


Sign in / Sign up

Export Citation Format

Share Document