scholarly journals Mesohalobacter halotolerans gen. nov., sp. nov., isolated from a marine solar saltern

2020 ◽  
Vol 70 (6) ◽  
pp. 3588-3596 ◽  
Author(s):  
Xi Feng ◽  
Jin-Yu Zhang ◽  
Jin Sang ◽  
Da-Shuai Mu ◽  
Zong-Jun Du

A Gram-stain-negative, non-motile, fine rod or short filament shaped, jacinth pigmented bacterium, designated strain WDS2C27T, was isolated from a marine solar saltern in Wendeng, Weihai, PR China (37°31′5″ N, 122°1′47″ E). Growth of WDS2C27T occurred at 20–42 °C (optimum 37 °C) and pH 6.5–8.5 (optimal pH 7.0–8.0). Optimal growth occurred in modified marine broth containing 6 % (w/v) NaCl. The major polar lipids in WDS2C27T were phosphatidylethanolamine, two unidentified aminolipids and one unidentified lipid. The major respiratory quinone of WDS2C27T was MK-6. The dominant fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The DNA G+C content was 35.0 mol%. The nucleotide sequence of the 16S rRNA gene indicated that the most closely related strain was Psychroflexus planctonicus X15M-8T (92.0 % over 1452 bp). WDS2C27T showed 60.7 % average amino acid identity, 55.6 % percentage of conserved proteins, 75.0 % average nucleotide identity and 13.1 % digital DNA–DNA hybridization identity with the type species of the genus Psychroflexus , Psychroflexus torquis ATCC 700755T. The phenotypic and genotypic properties and phylogenetic inference indicated that WDS2C27T could be assigned to a novel species within a novel genus, for which the name Mesohalobacter halotolerans gen. nov., sp. nov. is proposed. Strain WDS2C27T (=MCCC 1H00133T=KCTC 52044T) is the type strain.

2020 ◽  
Vol 70 (5) ◽  
pp. 3528-3533 ◽  
Author(s):  
Yan-lin Zhong ◽  
Xun-Ke Sun ◽  
Jian-Gang Hui ◽  
Hui-ling Teng ◽  
Zong-Jun Du

A Gram-stain-negative, rod-shaped, facultative anaerobic bacterium, designated strain 3539T, was isolated from coastal sediment of Weihai, PR China. Optimal growth occurred at 28 °C, pH 7.5–8.0 and in the presence of 3.0 % (w/v) NaCl. Results of phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 3539T formed a robust clade with members of the genus Marinicella and was closely related to Marinicella litoralis JCM 16154T, Marinicella sediminis F2T and Marinicella pacifica sw153T with 97.7, 96.2 and 95.4 % sequence similarity, respectively. The average amino acid identity, percentage of conserved proteins, average nucleotide identity and digital DNA–DNA hybridization values between strain 3539T and M. litoralis JCM 16154T were 64.9, 68.3, 72.8 and 18.9 %, respectively. The genomic DNA G+C content of strain 3539T was 42.0 mol%. The dominant respiratory quinone was ubiquinone-8, and the major fatty acids were iso-C15 : 0 and summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c). The polar lipids of strain 3539T consisted of phosphatidyldimethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified aminophospholipid, one unidentified lipid and three unidentified phospholipids. Based on the combination of phylogenetic, phenotypic and chemotaxonomic data, strain 3539T is considered to represent a novel species within the genus Marinicella in he family Alcanivoracaceae , for which the name Marinicella rhabdoformis sp. nov. is proposed. The type strain of the new species is 3539T (=KCTC 72414T=MCCC 1H00388T).


2019 ◽  
Vol 69 (4) ◽  
pp. 914-919 ◽  
Author(s):  
Rui Zhang ◽  
Shuo Wang ◽  
Chong Wang ◽  
Guang-Yu Wang ◽  
Zong-Jun Du

A novel cherry-red-pigmented, Gram-stain-negative, gliding, facultatively anaerobic and rod-shaped bacterium, designated strain WTE16T, was isolated from a sediment sample taken from a marine solar saltern of Wendeng, China (36° 59′ 56.49′′ N 122° 1′ 38.84′′ E). The novel isolate was able to grow at 20–40 °C (optimum 33 °C), at pH 6.0–9.0 (optimum pH 7.0) and with 1.0–12.0 % (w/v) NaCl (optimum 3.0–5.0 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the most closely related validly published species is Marinilabilia salmonicolor JCM 21150T (96.0 % similarity). Average nucleotide identity, average amino acid identity, percentage of conserved proteins and digital DNA–DNA hybridization values between strain WTE16T and Marinilabilia salmonicolor JCM 21150T were 73.8 %, 73.5 %, 63.4 % and 19.5–24.2 %, respectively. The genomic DNA G+C content of strain WTE16T was 40.8 mol%. Chemotaxonomic analysis showed that the sole respiratory quinone was menaquinone 7 (MK-7), and the major fatty acids included iso-C15 : 0 and anteiso-C15 : 0. The polar lipid profile of strain WTE16T included phosphatidylethanolamine, three unidentified phospholipids and three unidentified lipids. On the basis of its phylogenetic, phenotypic, chemotaxonomic, genotypic and genomic characteristics, strain WTE16T is suggested to represent a novel species of the genus Marinilabilia , for which the name Marinilabilia rubra sp. nov. is proposed. The type strain is WTE16T (=KCTC 62599T=MCCC 1H00311T).


2020 ◽  
Vol 70 (12) ◽  
pp. 6133-6141 ◽  
Author(s):  
Chan-Yeong Park ◽  
Seong-Jun Chun ◽  
Chunzhi Jin ◽  
Ve Van Le ◽  
Yingshun Cui ◽  
...  

A novel Gram-stain-negative, aerobic, non-spore-forming, non-motile, and rod-shaped bacterium, strain ETT8T was isolated from a chemostat culture of microalga Ettlia sp. YC001. Optimal growth was with 0–2% NaCl and at 25–37 °C on R2A medium. Phylogenetic analysis based on the 16S rRNA gene and genome sequence showed that strain ETT8T belongs to the genus Tabrizicola , with the close neighbours being T. sediminis DRYC-M-16T (98.1 %), T. alkalilacus DJCT (97.6 %), T. fusiformis SY72T (96.9 %), T. piscis K13M18T (96.8 %), and T. aquatica RCRI19T (96.5 %). The genomic comparison of strain ETT8T with type species in the genus Tabrizicola was analysed using the genome-to-genome distance calculator (GGDC), average nucleotide identity (ANI), and average amino acid identity (AAI) (values indicated ≤17.7, ≤75.4 and ≤71.9 %, respectively). The genomic DNA G+C content of strain ETT8T was 64.4 %, plus C18 : 1  ω6c and C18 : 0-iso were the major fatty acids and Q-10 the major respiratory quinone. Strain ETT8T contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine aminolipid, and four unidentified lipids as the major polar lipids. Based on the chemotaxonomic, genotypic, and phenotype results, strain ETT8T was recognized as a novel species of the genus Tabrizicola for which the name Tabrizicola algicola sp. nov. is proposed. The type strain is ETT8T (=KCTC 72206T=JCM 31893T=MCC 4339T).


Author(s):  
Lingping Zhuang ◽  
Haiyue Pang ◽  
Li Xu ◽  
Dan Chen

A novel bacterial strain, designated as HN-E44T, was isolated from marine sponge collected from Yangpu Bay, Hainan, PR China. Strain HN-E44T was Gram-stain-negative, non-motile, catalase-positive, oxidase-negative, rod-shaped and yellow-pigmented. Growth occurred at 4–37 °C (optimum, 28 °C), at pH 6–8 (pH 7) and in 0.5–14 % (w/v) NaCl (3–5 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain HN-E44T formed an independent cluster with Marixanthomonas ophiurae JCM 14121T within the family Flavobacteriaceae and had the highest sequence similarity of 93.6 % to the closest type strain M. ophiurae JCM 14121T. The major fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C17 : 0 3-OH, summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c) and iso-C15 : 1 G. The polar lipids comprised phosphatidylethanolamine, sphingolipid, four unidentified phospholipids, an unidentified aminophospholipid and an unidentified lipid. The respiratory quinone was identified as MK-6. The genomic DNA G+C content was determined to be 40.6 mol%. The average nucleotide identity (ANI) and average amino acid identity (AAI) values between strain HN-E44T and closest type strain M. ophiurae JCM 14121T were, respectively, 79.6 and 85.2 %, both of which were below thresholds for species delineation (95–96 % ANI and 95–96 % AAI), but were over thresholds for genus delineation (73.98 % ANI and 70–76 % AAI). The combined genotypic and phenotypic distinctiveness demonstrated that strain HN-E44T could be differentiated from closely related genera. Therefore, it is proposed that strain HN-E44T represents a novel species of the genus Marixanthomonas , for which the name Marixanthomonas spongiae sp. nov. is proposed, with the type strain HN-E44T (=MCCC 1K03332T=LMG 30459T).


2020 ◽  
Vol 70 (8) ◽  
pp. 4610-4615 ◽  
Author(s):  
Xiao-Yu Zhang ◽  
Rui Zhang ◽  
Jia-Cheng Wang ◽  
Ting Zhang ◽  
Zong-Jun Du

A novel Gram-stain-negative, strictly aerobic, gliding and rod-shaped bacterial strain, designated strain C33T, was isolated from Yuncheng Salt Lake, Shanxi, PR China. Strain C33T grows optimally at 37 °C, pH 7.5 and 5.0 % (w/v) NaCl. Cells of strain C33T are 0.3–0.5 µm wide and 1.0–2.0 µm long, catalase-positive and oxidase-positive. The major cellular fatty acids are iso-C15 : 0 and iso-C16 : 0. The sole respiratory quinone is Q-8. The major polar lipids include phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, one unidentified aminophospholipid, one unidentified glycolipid and four unidentified lipids. The results of phylogenetic analysis based on 16S rRNA gene sequences indicate that strain C33T has the highest similarities to Wenzhouxiangella marina KCTC 42284T (97.4 %), Wenzhouxiangella sediminis XDB06T (96.5 %) and ‘Wenzhouxiangella salilacus’ MCCC 1K03442T (95.2 %). The percentage of conserved proteins and average amino acid identity values between strain C33T and its close related species are higher than the threshold for dividing genera, the average nucleotide identity and digital DNA–DNA hybridization values are well below the threshold limits for species delineation. The genomic DNA G+C content is 63.7 mol%. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain C33T is considered to represent a novel species of the genus Wenzhouxiangella , for which the name Wenzhouxiangella limi sp. nov. is proposed. The type strain is C33T (=MCCC 1H00413T=KCTC 72874T).


2020 ◽  
Vol 70 (6) ◽  
pp. 3679-3685 ◽  
Author(s):  
Jin-Yu Zhang ◽  
Yu Xia ◽  
Xi Feng ◽  
Da-Shuai Mu ◽  
Zong-Jun Du

A Gram-stain-negative, rod-shaped (0.2–0.3×1.0-2.4 µm), catalase-positive, oxidase-negative and non-motile bacterium, designated strain RZ26T, was isolated from the marine red algae collected from the coast of Weihai, PR China. Growth of strain RZ26T occurred at 15–33 °C (optimum, 25–28 °C), pH 6.0–9.5 (optimum, pH 7.0–7.5) and 0.5–5.0 % (w/v) NaCl (optimum, 2.0–3.0 %). Resuls of phylogenetic analysis based on 16S rRNA gene sequences showed that strain RZ26T was most closely related to Maribacter spongiicola DSM 25233T (96.2 % sequence similarity), followed by Maribacter forsetii DSM 18668T (96.1 %) and Maribacter vaceletii DSM 25230T (95.4 %). The average nucleotide identity and the average amino acid identity values between strain RZ26T and M. sedimenticola KCTC 12966T, M. spongiicola DSM 25233T, M. vaceletii DSM 25230T and M. forsetii DSM 18668T were 75.6, 76.2, 76.0, 76.7, 64.3, 63.9, 68.6 and 68.0 %, respectively. The digital DNA–DNAhybridization values based on the draft genomes between strain RZ26T and M. sedimenticola KCTC 12966T, M. spongiicola DSM 25233T and M. vaceletii DSM 25230T were 38.0, 35.1 and 37.1 %, respectively. The major fatty acids in strain RZ26T were iso-C17 : 0 3-OH, iso-C15 : 0 and C16 : 1  ω7c/C16 : 1  ω6c. The major respiratory quinone was MK-6. The dominant polar lipid was phosphatidylethanolamine. The DNA G+C content was 38.0 mol%. Phylogenetic analysis shows strain RZ26T fell within a clade comprising species of the genus Maribacter . Polyphasic taxonomy indicates that the isolate represents a novel species of the genus Maribacter , for which the name Maribacter algarum sp. nov. is proposed, with type strain RZ26T (=KCTC 62992T=MCCC 1H00362T).


Author(s):  
Qin Ma ◽  
Rui-Feng Lei ◽  
Yu-Qian Li ◽  
Dilireba Abudourousuli ◽  
Zulihumaer Rouzi ◽  
...  

A bacterial strain, designated YZGR15T, was isolated from the root of an annual halophyte Suaeda aralocaspica, collected from the southern edge of the Gurbantunggut desert, north-west PR China. Cells of the isolate were Gram-stain-positive, facultatively anaerobic, irregular rods. Growth occurred at 4–42 °C (optimum, 30–37 °C), at pH 6.0–9.0 (optimum, pH 7.0–7.5) and in the presence of 0–9 % (w/v) NaCl (optimum, 2–5 %). Phylogenetic analysis using 16S rRNA gene sequences indicated that strain YZGR15T showed the highest sequence similarity to Sanguibacter keddieii (98.27 %), Sanguibacter antarcticus (98.20 %) and Sanguibacter inulinus (98.06 %). Results of genome analyses of strain YZGR15T indicated that the genome size was 3.16 Mb, with a genomic DNA G+C content of 71.9 mol%. Average nucleotide identity and digital DNA–DNA hybridization values between strain YZGR15Tand three type strains were in the range of 76.5–77.8 % and 20.0–22.2 %, respectively. Analysis of the cellular component of strain YZGR15T revealed that the primary fatty acids were anteiso-C15 : 0, C16 : 0, C14 : 0 and iso-C16 : 0 and the polar lipids included diphosphatidylglycerol, phosphatidylglycerol, three unidentified phospholipids and two unidentified glycolipids. The cell-wall characteristic amino acids were glutamic acid, alanine and an unknown amino acid. The whole-cell sugars for the strain were mannose, ribose, rhamnose, glucose and an unidentified sugar. The predominant respiratory quinone was MK-9(H4). Based on the results of genomic, phylogenetic, phenotypic and chemotaxonomic analyses, strain YZGR15T represents a novel species of the genus Sanguibacter , for which the name Sanguibacter suaedae sp. nov. is proposed. The type strain is YZGR15T (=CGMCC 1.18691T=KCTC 49659T)


2020 ◽  
Vol 70 (11) ◽  
pp. 5943-5949 ◽  
Author(s):  
Yun-zhen Yang ◽  
Ji-feng Chen ◽  
Wan-ru Huang ◽  
Ran-ran Zhang ◽  
Shuangjiang Liu ◽  
...  

A novel Gram-stain-negative, strictly aerobic, rod-shaped, brick red-pigmented bacterium, designated R-22-1 c-1T, was isolated from water from Baiyang Lake, Hebei Province, PR China. The strain was able to grow at 20–30 °C (optimum, 30 °C) and pH 6–7 (optimum, pH 6) in Reasoner’s 2A medium. 16S rRNA gene sequence and phylogenetic analyses of R-22-1 c-1T revealed closest relationships to Rufibacter immobilis MCC P1T (97.8 %), Rufibacter sediminis H-1T (97.9 %) and Rufibacter glacialis MDT1-10-3T (97.0 %), with other species of the genus Rufibacter showing less than 97.0 % sequence similarity. The predominant polar lipids were phosphatidylethanolamine, two unidentified aminophospholipids and three unidentified lipids. The major cellular fatty acids were iso-C15 : 0, C15 : 1  ω6c, C17 : 1  ω6c, anteiso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1  ω7c and/or C16 : 1  ω6c) and summed feature 4 (iso-C17 : 1I and/or anteiso-C17 : 1B). The respiratory quinone was MK-7. The draft genome of R-22-1 c-1T was 5.6 Mbp in size, with a G+C content of 50.2 mol%. The average nucleotide identity and digital DNA–DNA hybridization relatedness values between strain R-22-1 c-1T and related type strains were R. immobilis MCC P1T (77.2 and 21.8 %), R. sediminis H-1T (81.6 and 21.4 %) and R. tibetensis 1351T (78.5 and 22.9 %). Based on these phylogenetic, chemotaxonomic and genotypic results, strain R-22-1 c-1T represents a novel species in the genus Rufibacter , for which the name Rufibacter latericius sp. nov. is proposed. The type strain is R-22-1 c-1T (=CGMCC 1.13570T=KCTC 62781T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2879-2887 ◽  
Author(s):  
Dong Han ◽  
Heng-Lin Cui

A novel Gram-stain-negative, aerobic and rod-shaped halophilic archaeon, designated HD8-45T, was isolated from the red brine of salted brown alga Laminaria produced at Dalian, PR China. According to the results of 16S rRNA gene and rpoB′ gene sequence comparisons, strain HD8-45T showed the highest sequence similarity to the corresponding genes of Salinirussus salinus YGH44T (95.1 and 85.2 % similarities, respectively), Halovenus aranensis EB27T (91.2 and 86.0 % similarities, respectively). The low sequence similarity and the phylogeny implied the novel generic status of strain HD8-45T. Genomic relatedness analyses showed that strain HD8-45T were clearly distinguished from other species in the order Halobacteriales , with average nucleotide identity, amino acid identity and in silico DNA–DNA hybridization values not more than 75.1, 65.6 and 21.5 %. The polar lipid pattern contained phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, two major glycolipids and two minor glycolipids. The two major glycolipids and a minor glycolipid were chromatographically identical to disulfated mannosyl glucosyl diether, sulfated mannosyl glucosyl diether and mannosyl glucosyl diether, respectively. The major respiratory quinones were menaquinone MK-8 and MK-8(H2). The DNA G+C content was 62.0 mol% (Tm ) and 61.9 mol% (genome). All these results showed that strain HD8-45T represents a novel species of a new genus in the order Halobacteriales , for which the name Salinibaculum litoreum gen. nov., sp. nov. is proposed. The type strain of Salinibaculum litoreum is HD8-45T (=CGMCC 1.15328T=JCM 31107T).


2020 ◽  
Vol 70 (8) ◽  
pp. 4822-4830 ◽  
Author(s):  
Huibin Lu ◽  
Tongchu Deng ◽  
Feifei Liu ◽  
Yonghong Wang ◽  
Xunan Yang ◽  
...  

Five Gram-stain-negative, catalase- and oxidase-positive, rod-shaped and motile strains (FT50WT, FT80WT, FT92WT, FT94W and FT135WT) were isolated from a subtropical stream in PR China. Comparisons based on 16S rRNA gene sequences showed that strains FT50WT, FT94W and FT135WT take strain Duganella sacchari Sac-22T, and strains FT80WT and FT92WT take strain Duganella ginsengisoli DCY83T as their closest neighbour in the phylogenetic trees, respectively. The G+C contents of strains FT50WT, FT80WT, FT92WT, FT94W and FT135WT were 63.3, 62.4, 62.8, 63.8 and 60.8 %, respectively. The reconstructed phylogenomic tree based on concatenated 92 core genes showed that strains FT50WT, FT80WT, FT94W and FT135WT clustered together with species of the genus Duganella , but strains FT92WT and D. ginsengisoli KCTC 42409T were located in the clades of the genus Massilia . The calculated pairwise average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values among strains FT50WT, FT80WT, FT92WT, FT94W, FT135WT and related strains were in the ranges of 75.6–87.8% and 20.3–33.8% except that the values between strains FT50WT and FT94W were 98.7 and 89.2%, respectively. The respiratory quinone of these five strains was Q-8. The major fatty acids were C16 : 1  ω7c, C16 : 0, C18 : 1  ω7c and C12 : 0. The polar lipids included phosphatidylethanolamine, phosphatidylglycerol and one unidentified phospholipid. Considering the distinct phylogenetic relationships of D. ginsengisoli with species of the genus Massilia in the phylogenomic tree, it was reasonable to transfer D. ginsengisoli to the genus Massilia as Massilia ginsengisoli comb. nov. Combining the results of phylogenomic analysis, ANI and dDDH data, and a range of physiological and biochemical characteristics together, strains FT50WT and FT94W should belong to the same species and be assigned to genus Duganella with strains FT80WT and FT135WT together, and strain FT92WT should be assigned to the genus Massilia , for which the names Duganella lactea sp. nov. (type strain FT50WT=GDMCC 1.1674T=KACC 21466T), Duganella guangzhouensis sp. nov. (FT80WT=GDMCC 1.1678T=KACC 21470T), Duganella flavida sp. nov. (FT135WT=GDMCC 1.1745T=KACC 21659T) and Massilia rivuli sp. nov. (FT92WT=GDMCC 1.1682T=KACC 21474T) are proposed.


Sign in / Sign up

Export Citation Format

Share Document