Sanguibacter suaedae sp. nov., isolated from the root of Suaeda aralocaspica in north-west PR China

Author(s):  
Qin Ma ◽  
Rui-Feng Lei ◽  
Yu-Qian Li ◽  
Dilireba Abudourousuli ◽  
Zulihumaer Rouzi ◽  
...  

A bacterial strain, designated YZGR15T, was isolated from the root of an annual halophyte Suaeda aralocaspica, collected from the southern edge of the Gurbantunggut desert, north-west PR China. Cells of the isolate were Gram-stain-positive, facultatively anaerobic, irregular rods. Growth occurred at 4–42 °C (optimum, 30–37 °C), at pH 6.0–9.0 (optimum, pH 7.0–7.5) and in the presence of 0–9 % (w/v) NaCl (optimum, 2–5 %). Phylogenetic analysis using 16S rRNA gene sequences indicated that strain YZGR15T showed the highest sequence similarity to Sanguibacter keddieii (98.27 %), Sanguibacter antarcticus (98.20 %) and Sanguibacter inulinus (98.06 %). Results of genome analyses of strain YZGR15T indicated that the genome size was 3.16 Mb, with a genomic DNA G+C content of 71.9 mol%. Average nucleotide identity and digital DNA–DNA hybridization values between strain YZGR15Tand three type strains were in the range of 76.5–77.8 % and 20.0–22.2 %, respectively. Analysis of the cellular component of strain YZGR15T revealed that the primary fatty acids were anteiso-C15 : 0, C16 : 0, C14 : 0 and iso-C16 : 0 and the polar lipids included diphosphatidylglycerol, phosphatidylglycerol, three unidentified phospholipids and two unidentified glycolipids. The cell-wall characteristic amino acids were glutamic acid, alanine and an unknown amino acid. The whole-cell sugars for the strain were mannose, ribose, rhamnose, glucose and an unidentified sugar. The predominant respiratory quinone was MK-9(H4). Based on the results of genomic, phylogenetic, phenotypic and chemotaxonomic analyses, strain YZGR15T represents a novel species of the genus Sanguibacter , for which the name Sanguibacter suaedae sp. nov. is proposed. The type strain is YZGR15T (=CGMCC 1.18691T=KCTC 49659T)

2020 ◽  
Vol 70 (11) ◽  
pp. 5943-5949 ◽  
Author(s):  
Yun-zhen Yang ◽  
Ji-feng Chen ◽  
Wan-ru Huang ◽  
Ran-ran Zhang ◽  
Shuangjiang Liu ◽  
...  

A novel Gram-stain-negative, strictly aerobic, rod-shaped, brick red-pigmented bacterium, designated R-22-1 c-1T, was isolated from water from Baiyang Lake, Hebei Province, PR China. The strain was able to grow at 20–30 °C (optimum, 30 °C) and pH 6–7 (optimum, pH 6) in Reasoner’s 2A medium. 16S rRNA gene sequence and phylogenetic analyses of R-22-1 c-1T revealed closest relationships to Rufibacter immobilis MCC P1T (97.8 %), Rufibacter sediminis H-1T (97.9 %) and Rufibacter glacialis MDT1-10-3T (97.0 %), with other species of the genus Rufibacter showing less than 97.0 % sequence similarity. The predominant polar lipids were phosphatidylethanolamine, two unidentified aminophospholipids and three unidentified lipids. The major cellular fatty acids were iso-C15 : 0, C15 : 1  ω6c, C17 : 1  ω6c, anteiso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1  ω7c and/or C16 : 1  ω6c) and summed feature 4 (iso-C17 : 1I and/or anteiso-C17 : 1B). The respiratory quinone was MK-7. The draft genome of R-22-1 c-1T was 5.6 Mbp in size, with a G+C content of 50.2 mol%. The average nucleotide identity and digital DNA–DNA hybridization relatedness values between strain R-22-1 c-1T and related type strains were R. immobilis MCC P1T (77.2 and 21.8 %), R. sediminis H-1T (81.6 and 21.4 %) and R. tibetensis 1351T (78.5 and 22.9 %). Based on these phylogenetic, chemotaxonomic and genotypic results, strain R-22-1 c-1T represents a novel species in the genus Rufibacter , for which the name Rufibacter latericius sp. nov. is proposed. The type strain is R-22-1 c-1T (=CGMCC 1.13570T=KCTC 62781T).


2020 ◽  
Vol 70 (5) ◽  
pp. 3528-3533 ◽  
Author(s):  
Yan-lin Zhong ◽  
Xun-Ke Sun ◽  
Jian-Gang Hui ◽  
Hui-ling Teng ◽  
Zong-Jun Du

A Gram-stain-negative, rod-shaped, facultative anaerobic bacterium, designated strain 3539T, was isolated from coastal sediment of Weihai, PR China. Optimal growth occurred at 28 °C, pH 7.5–8.0 and in the presence of 3.0 % (w/v) NaCl. Results of phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 3539T formed a robust clade with members of the genus Marinicella and was closely related to Marinicella litoralis JCM 16154T, Marinicella sediminis F2T and Marinicella pacifica sw153T with 97.7, 96.2 and 95.4 % sequence similarity, respectively. The average amino acid identity, percentage of conserved proteins, average nucleotide identity and digital DNA–DNA hybridization values between strain 3539T and M. litoralis JCM 16154T were 64.9, 68.3, 72.8 and 18.9 %, respectively. The genomic DNA G+C content of strain 3539T was 42.0 mol%. The dominant respiratory quinone was ubiquinone-8, and the major fatty acids were iso-C15 : 0 and summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c). The polar lipids of strain 3539T consisted of phosphatidyldimethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified aminophospholipid, one unidentified lipid and three unidentified phospholipids. Based on the combination of phylogenetic, phenotypic and chemotaxonomic data, strain 3539T is considered to represent a novel species within the genus Marinicella in he family Alcanivoracaceae , for which the name Marinicella rhabdoformis sp. nov. is proposed. The type strain of the new species is 3539T (=KCTC 72414T=MCCC 1H00388T).


Author(s):  
Lingping Zhuang ◽  
Haiyue Pang ◽  
Li Xu ◽  
Dan Chen

A novel bacterial strain, designated as HN-E44T, was isolated from marine sponge collected from Yangpu Bay, Hainan, PR China. Strain HN-E44T was Gram-stain-negative, non-motile, catalase-positive, oxidase-negative, rod-shaped and yellow-pigmented. Growth occurred at 4–37 °C (optimum, 28 °C), at pH 6–8 (pH 7) and in 0.5–14 % (w/v) NaCl (3–5 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain HN-E44T formed an independent cluster with Marixanthomonas ophiurae JCM 14121T within the family Flavobacteriaceae and had the highest sequence similarity of 93.6 % to the closest type strain M. ophiurae JCM 14121T. The major fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C17 : 0 3-OH, summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c) and iso-C15 : 1 G. The polar lipids comprised phosphatidylethanolamine, sphingolipid, four unidentified phospholipids, an unidentified aminophospholipid and an unidentified lipid. The respiratory quinone was identified as MK-6. The genomic DNA G+C content was determined to be 40.6 mol%. The average nucleotide identity (ANI) and average amino acid identity (AAI) values between strain HN-E44T and closest type strain M. ophiurae JCM 14121T were, respectively, 79.6 and 85.2 %, both of which were below thresholds for species delineation (95–96 % ANI and 95–96 % AAI), but were over thresholds for genus delineation (73.98 % ANI and 70–76 % AAI). The combined genotypic and phenotypic distinctiveness demonstrated that strain HN-E44T could be differentiated from closely related genera. Therefore, it is proposed that strain HN-E44T represents a novel species of the genus Marixanthomonas , for which the name Marixanthomonas spongiae sp. nov. is proposed, with the type strain HN-E44T (=MCCC 1K03332T=LMG 30459T).


Author(s):  
Shan Jiang ◽  
You-Yang Sun ◽  
Feng-Bai Lian ◽  
Xiao-Kui Zhang ◽  
Zong-Jun Du

A Gram-stain negative, rod-shaped, facultatively aerobic, pale-beige-coloured bacterial strain, designated F7233T, was isolated from coastal sediment sampled at Jingzi Bay, Weihai, PR China. Cells of strain F7233T were 0.3–0.4 µm wide, 1.2–1.4 µm wide long, non-spore-forming and motile with one flagellum. Optimum growth occurred at 30 °C, with 1.0 % (w/v) NaCl and at pH 6.5–7.0. Positive for nitrate reduction, hydrolysis of Tweens and oxidase activity. The sole respiratory quinone of strain F7233T was ubiquinone-10 and the predominant cellular fatty acid was summed feature 8 (C18 : 1  ω7c/C18 : 1  ω6c). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and one unidentified aminophospholipid. The G+C content of the chromosomal DNA was 63.3 mol%. Phylogenetic analysis of the 16S rRNA gene sequence revealed that the newly isolate belonged to the genus Stappia , with 96.8 % sequence similarity to Stappia indica MCCC 1A01226T, 96.1 % similarity to Stappia stellulata JCM 20692T and 95.5% similarity to Stappia taiwanensis CC-SPIO-10-1T. On the basis of phylogenetic, phenotypic and chemotaxonomic data, it is considered that strain F7233T should represent a novel species within the genus Stappia , for which the name Stappia albiluteola sp. nov. is proposed. The type strain is F7233T (=MCCC 1H00419T=KCTC 72859T).


2020 ◽  
Vol 70 (6) ◽  
pp. 3679-3685 ◽  
Author(s):  
Jin-Yu Zhang ◽  
Yu Xia ◽  
Xi Feng ◽  
Da-Shuai Mu ◽  
Zong-Jun Du

A Gram-stain-negative, rod-shaped (0.2–0.3×1.0-2.4 µm), catalase-positive, oxidase-negative and non-motile bacterium, designated strain RZ26T, was isolated from the marine red algae collected from the coast of Weihai, PR China. Growth of strain RZ26T occurred at 15–33 °C (optimum, 25–28 °C), pH 6.0–9.5 (optimum, pH 7.0–7.5) and 0.5–5.0 % (w/v) NaCl (optimum, 2.0–3.0 %). Resuls of phylogenetic analysis based on 16S rRNA gene sequences showed that strain RZ26T was most closely related to Maribacter spongiicola DSM 25233T (96.2 % sequence similarity), followed by Maribacter forsetii DSM 18668T (96.1 %) and Maribacter vaceletii DSM 25230T (95.4 %). The average nucleotide identity and the average amino acid identity values between strain RZ26T and M. sedimenticola KCTC 12966T, M. spongiicola DSM 25233T, M. vaceletii DSM 25230T and M. forsetii DSM 18668T were 75.6, 76.2, 76.0, 76.7, 64.3, 63.9, 68.6 and 68.0 %, respectively. The digital DNA–DNAhybridization values based on the draft genomes between strain RZ26T and M. sedimenticola KCTC 12966T, M. spongiicola DSM 25233T and M. vaceletii DSM 25230T were 38.0, 35.1 and 37.1 %, respectively. The major fatty acids in strain RZ26T were iso-C17 : 0 3-OH, iso-C15 : 0 and C16 : 1  ω7c/C16 : 1  ω6c. The major respiratory quinone was MK-6. The dominant polar lipid was phosphatidylethanolamine. The DNA G+C content was 38.0 mol%. Phylogenetic analysis shows strain RZ26T fell within a clade comprising species of the genus Maribacter . Polyphasic taxonomy indicates that the isolate represents a novel species of the genus Maribacter , for which the name Maribacter algarum sp. nov. is proposed, with type strain RZ26T (=KCTC 62992T=MCCC 1H00362T).


2020 ◽  
Vol 70 (7) ◽  
pp. 4285-4290 ◽  
Author(s):  
Lina Lyu ◽  
Bin Zhi ◽  
Qiliang Lai ◽  
Zongze Shao ◽  
Zhiqiang Yu

Strain 12-3T was isolated from seawater of the Guanyinshan Coast, Xiamen, Fujian Province, PR China. The bacterium was Gram-stain-negative, rod-shaped, aerobic, oxidase-positive and catalase-negative. Growth of strain 12-3T occurred at 10–37 °C (optimum, 20–30 °C), at pH 5.0–11.0 (optimum, pH 7.0–8.0) and at a salinity range of 0–10 % (optimum, 3–5 %). The results of phylogenetic analysis based on its 16S rRNA gene sequence indicated that strain 12-3T belonged to the genus Paracoccus and had the highest sequence similarity to Paracoccus lutimaris HDM-25T (97.4 %), followed by Paracoccus isoporae SW-3T (96.9 %), Paracoccus caeni MJ17T (96.9 %), Paracoccus pacificus F14T (96.8 %) and other species in the genus Paracoccus (95.3–96.5 %). The average nucleotide identity (ANI) and DNA–DNA hybridization (DDH) values between strain 12-3T and P. lutimaris HDM-25T were 76.1 and 17.0 %, respectively. ANI and DDH values between strain 12-3T and P. isoporae SW-3T were 78.9 and 18.2 %, respectively. The principal fatty acid of strain 12-3T was summed feature 8 (C18 : 1  ω6c/ω7c) and C18 : 0. The respiratory quinone of strain 12-3T was Q10. The polar lipids included phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid. The G+C content of the chromosomal DNA was 63.9 mol%. The combination of the results of the phylogenetic, phenotypic and chemotaxonomic analyses, and its low ANI and DDH values indicate that strain 12-3T represents a novel species of the genus Paracoccus , for which the name Paracoccus xiamenensis sp. nov. is proposed. The type strain is 12-3T (=MCCC 1A16381T=KCTC 72687T).


2015 ◽  
Vol 65 (Pt_5) ◽  
pp. 1622-1627 ◽  
Author(s):  
Zhi-Ping Zhong ◽  
Ying Liu ◽  
Ting-Ting Hou ◽  
Yu-Guang Zhou ◽  
Hong-Can Liu ◽  
...  

A Gram-staining-negative bacterium, strain TS-T86T, was isolated from Lake Tuosu, a saline lake (salinity 5.4 %, w/w) in Qaidam basin, China. Its taxonomic position was determined by using a polyphasic approach. Strain TS-T86T was strictly heterotrophic, aerobic and catalase- and oxidase-positive. Cells were non-spore-forming, non-motile rods, 0.4–0.6 µm wide and 1.2–2.3 µm long. Growth was observed in the presence of 0–9.0 % (w/v) NaCl (optimum, 2.0 %), at 4–35 °C (optimum, 25 °C) and at pH 7.0–10.5 (optimum, pH 8.5–9.0). Strain TS-T86T contained MK-7 as the predominant respiratory quinone. The major fatty acids (>10 %) were iso-C15 : 1 G, iso-C15 : 0, iso-C17 : 1ω9c, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The polar lipids consisted of phosphatidylethanolamine, an unknown phospholipid, six unidentified aminolipids and two uncharacterized lipids. The DNA G+C content was 35 mol% (T m). Phylogenetic trees based on 16S rRNA gene sequences showed that strain TS-T86T was associated with the genus Belliella , and showed the highest sequence similarity to Belliella baltica BA134T (98.5 %) and then to Belliella kenyensis No.164T (95.7 %) and Belliella pelovolcani CC-SAL-25T (95.3 %). DNA–DNA relatedness of strain TS-T86T to Belliella baltica DSM 15883T was 32±3 %. It is concluded that strain TS-T86T represents a novel species of the genus Belliella , for which the name Belliella aquatica sp. nov. is proposed. The type strain is TS-T86T ( = CGMCC 1.12479T = JCM 19468T).


Author(s):  
Lina Sun ◽  
Wei Chen ◽  
Kaihua Huang ◽  
Weiguang Lyu ◽  
Xinhua Gao

Strain SJQ9T, an aerobic bacterium isolated from a soil sample collected in Shanghai, PR China, was characterized using a polyphasic approach. It grew optimally at pH 7.0, 30–35 °C and in the presence of 1 % (w/v) NaCl. A comparative analysis of 16S rRNA gene sequences showed that strain SJQ9T fell within the genus Aquabacterium . The closest phylogenetic relatives of strain SJQ9T were Aquabacterium citratiphilum DSM 11900T (98.6 % sequence similarity) and Aquabacterium commune DSM 11901T (96.4 %). Cells of the strain were Gram-stain-negative, motile, non-spore-forming, rod-shaped and positive for oxidase activity and negative for catalase. The chemotaxonomic properties of strain SJQ9T were consistent with those of the genus Aquabacterium : the major fatty acid was summed feature 3 (C16 : 1  ω6c and/or C16 : 1  ω7c). The isoprenoid quinone was Q-8. The major polar lipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content was 65.7 mol%. Strain SH9T exhibited a DNA–DNA relatedness level of 34±2 % with A. citratiphilum DSM 11900T and 28±3 % with A. commune DSM 11901T. Based on the obtained data, strain SJQ9T represents a novel species of the genus Aquabacterium , for which the name Aquabacterium soli sp. nov. is proposed. The type strain is SJQ9T (=JCM 33106T=CCTCC AB 2018284T).


2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 1945-1951 ◽  
Author(s):  
Yong-Guang Zhang ◽  
Qing Liu ◽  
Hong-Fei Wang ◽  
Dao-Feng Zhang ◽  
Yuan-Ming Zhang ◽  
...  

A facultatively alkaliphilic actinomycete strain, designated EGI 80088T, was isolated from a saline-alkali soil sample from Xinjiang province, north-west China, and subjected to a polyphasic taxonomic characterization. Strain EGI 80088T formed fragmented aerial hyphae and short spore chains, and rod-like spores aggregated at maturity. Whole-cell hydrolysates of the isolate contained ll-diaminopimelic acid as the diagnostic diamino acid, and glucosamine, mannose, galactose, glucose and rhamnose as the marker sugars. The major fatty acids identified (>5 %) were anteiso-C15 : 0, iso-C15 : 0, summed feature 4 (iso-C17 : 1I/anteiso-C17 : 1B), iso-C16 : 0 and anteiso-C17 : 0. The predominant menaquinone was MK-9(H4). The G+C content of the genomic DNA of strain EGI 80088T was 70.6 mol%. EGI 80088T showed the highest 16S rRNA gene sequence similarity to its closest phylogenetic neighbour Haloactinopolyspora alba YIM 93246T (98.5 %). The DNA–DNA relatedness value of the strain EGI 80088T and H. alba YIM 93246T was 59.3±5.2 %. On the basis of morphological, chemotaxonomic and phylogenetic characteristics and DNA–DNA hybridization data, strain EGI 80088T represents a novel species of the genus Haloactinopolyspora , for which the name Haloactinopolyspora alkaliphila sp. nov. (type strain EGI 80088T = BCRC 16946T = JCM 19128T) is proposed. The description of the genus Haloactinopolyspora has also been emended.


2020 ◽  
Vol 70 (4) ◽  
pp. 2879-2887 ◽  
Author(s):  
Dong Han ◽  
Heng-Lin Cui

A novel Gram-stain-negative, aerobic and rod-shaped halophilic archaeon, designated HD8-45T, was isolated from the red brine of salted brown alga Laminaria produced at Dalian, PR China. According to the results of 16S rRNA gene and rpoB′ gene sequence comparisons, strain HD8-45T showed the highest sequence similarity to the corresponding genes of Salinirussus salinus YGH44T (95.1 and 85.2 % similarities, respectively), Halovenus aranensis EB27T (91.2 and 86.0 % similarities, respectively). The low sequence similarity and the phylogeny implied the novel generic status of strain HD8-45T. Genomic relatedness analyses showed that strain HD8-45T were clearly distinguished from other species in the order Halobacteriales , with average nucleotide identity, amino acid identity and in silico DNA–DNA hybridization values not more than 75.1, 65.6 and 21.5 %. The polar lipid pattern contained phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, two major glycolipids and two minor glycolipids. The two major glycolipids and a minor glycolipid were chromatographically identical to disulfated mannosyl glucosyl diether, sulfated mannosyl glucosyl diether and mannosyl glucosyl diether, respectively. The major respiratory quinones were menaquinone MK-8 and MK-8(H2). The DNA G+C content was 62.0 mol% (Tm ) and 61.9 mol% (genome). All these results showed that strain HD8-45T represents a novel species of a new genus in the order Halobacteriales , for which the name Salinibaculum litoreum gen. nov., sp. nov. is proposed. The type strain of Salinibaculum litoreum is HD8-45T (=CGMCC 1.15328T=JCM 31107T).


Sign in / Sign up

Export Citation Format

Share Document