Xanthobacter oligotrophicus sp.nov., isolated from paper mill sewage

Author(s):  
Ekaterina N. Tikhonova ◽  
Denis S. Grouzdev ◽  
Irina K. Kravchenko

A novel, aerobic nitrogen-fixing methylotrophic bacterium, strain 29kT, was enriched and isolated from sludge generated during wastewater treatment at a paper mill in Baikal, Russian Federation. Cells were Gram-stain-variable. The cell wall was of the negative Gram-type. Cells were curved oval rod-shaped, 0.5–0.7×1.7–3.4 µm and formed yellow-coloured colonies. Cells tended to be pleomorphic if grown on media containing succinate or coccoid if grown in the presence of methyl alcohol as the sole carbon source. Cells were non-motile, non-spore-forming and contained retractile (polyphosphate) and lipid (poly-β-hydroxybutyrate) bodies. The major respiratory quinone was ubiquinone Q-10 and the predominant cellular fatty acids were C18:1 ω7, C19:0 cyclo and C16:0. The genomic DNA G+C content was 67.95 mol%. Strain 29kT was able to grow at 4–37 °C (optimum, 30 °C), at pH 6.0–8.5 (optimum, pH 6.5–7.0) and at salinities of 0–0.5% (w/v) NaCl (optimum, 0% NaCl). Catalase and oxidase were positive. Strain 29kT could grow chemolithoautotrophically in mineral media under an atmosphere of H2, O2 and CO2 as well as chemoorganoheterotrophically on methanol, ethanol, n-propanol, n-butanol and various organic acids. The carbohydrate utilization spectrum is limited by glucose and raffinose. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the newly isolated strain was a member of the genus Xanthobacter with Xanthobacter autotrophicus 7cT (99.9% similarity) and Xanthobacter viscosus 7dT (99.4 % similarity) as closest relatives among species with validly published names. The average nucleotide identity and digital DNA–DNA hybridization values of 92.7 and 44.9%, respectively, of the 29kT to the genome of the most closely related species, X. autotrophicus 7cT, were below the species cutoffs. Based on genotypic, phenotypic and chemotaxonomic characteristics, it is proposed that the isolate represents a novel species, Xanthobacter oligotrophicus sp. nov. The type strain is 29kT (=KCTC 72777T=VKM B-3453T).

2020 ◽  
Vol 70 (12) ◽  
pp. 6133-6141 ◽  
Author(s):  
Chan-Yeong Park ◽  
Seong-Jun Chun ◽  
Chunzhi Jin ◽  
Ve Van Le ◽  
Yingshun Cui ◽  
...  

A novel Gram-stain-negative, aerobic, non-spore-forming, non-motile, and rod-shaped bacterium, strain ETT8T was isolated from a chemostat culture of microalga Ettlia sp. YC001. Optimal growth was with 0–2% NaCl and at 25–37 °C on R2A medium. Phylogenetic analysis based on the 16S rRNA gene and genome sequence showed that strain ETT8T belongs to the genus Tabrizicola , with the close neighbours being T. sediminis DRYC-M-16T (98.1 %), T. alkalilacus DJCT (97.6 %), T. fusiformis SY72T (96.9 %), T. piscis K13M18T (96.8 %), and T. aquatica RCRI19T (96.5 %). The genomic comparison of strain ETT8T with type species in the genus Tabrizicola was analysed using the genome-to-genome distance calculator (GGDC), average nucleotide identity (ANI), and average amino acid identity (AAI) (values indicated ≤17.7, ≤75.4 and ≤71.9 %, respectively). The genomic DNA G+C content of strain ETT8T was 64.4 %, plus C18 : 1  ω6c and C18 : 0-iso were the major fatty acids and Q-10 the major respiratory quinone. Strain ETT8T contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine aminolipid, and four unidentified lipids as the major polar lipids. Based on the chemotaxonomic, genotypic, and phenotype results, strain ETT8T was recognized as a novel species of the genus Tabrizicola for which the name Tabrizicola algicola sp. nov. is proposed. The type strain is ETT8T (=KCTC 72206T=JCM 31893T=MCC 4339T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 809-814 ◽  
Author(s):  
Jun Zhang ◽  
Yueqiang Wang ◽  
Shungui Zhou ◽  
Chunyuan Wu ◽  
Jian He ◽  
...  

A facultatively anaerobic bacterium, strain CY01T, isolated from subterranean forest sediment collected from Guangdong Province, China, was investigated using a polyphasic taxonomic approach. The cells were short rods, Gram-negative, non-sporulating and motile. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain CY01T showed highest sequence similarities to Comamonas thiooxydans S23T (98.0 %), Comamonas testosteroni JCM 5832T (97.9 %), Comamonas koreensis KCTC 12005T (97.7 %) and Comamonas odontotermitis LMG 23579T (97.0 %). The major respiratory quinone was ubiquinone-8. The major cellular fatty acids were summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), C16 : 0 and summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c). Based on the phylogenetic analysis, DNA–DNA hybridization, whole-cell fatty acid composition as well as biochemical characteristics, strain CY01T was clearly distinguishable from all recognized species of the genus Comamonas and should be classified as a representative of a novel species of the genus, for which the name Comamonas guangdongensis sp. nov. is proposed. The type strain is CY01T ( = CCTCC AB 2011133T = KACC 16241T).


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1766-1770 ◽  
Author(s):  
Joon Yong Kim ◽  
Jina Lee ◽  
Na-Ri Shin ◽  
Ji-Hyun Yun ◽  
Tae Woong Whon ◽  
...  

A novel Gram-stain-negative, facultatively anaerobic, non-motile and coccus-shaped bacterium, strain C7T, was isolated from the gut of the butterfly Sasakia charonda. Strain C7T grew optimally at 20–25 °C, at pH 7–8 and with 1 % (w/v) NaCl. The strain was negative for oxidase activity but positive for catalase activity. The 16S rRNA gene sequences of strain C7T and Orbus hercynius CN3T shared 96.8 % similarity. The major fatty acids identified were C14 : 0, C16 : 0, C18 : 1ω7c and summed feature 2 (comprising C14 : 0 3-OH/iso-C16 : 1). The major respiratory quinone was ubiquinone-8 (Q-8). The polar lipids of strain C7T were phosphatidylethanolamine, phosphatidylglycerol, an unidentified phospholipid and two unidentified aminophospholipids. The G+C content of the genomic DNA extracted from strain C7T was 32.1 mol%. Taken together, the phenotypic, genotypic and phylogenetic analyses indicate that strain C7T represents a novel species of the genus Orbus , for which the name Orbus sasakiae sp. nov. is proposed. The type strain is C7T ( = KACC 16544T = JCM 18050T). An emended description of the genus Orbus is provided.


Author(s):  
Nantawan Niemhom ◽  
Chanwit Suriyachadkun ◽  
Chokchai Kittiwongwattana

Two Gram-stain-negative, non-motile, rod-shaped bacterial strains were isolated from the surfaces of rice roots. They were designated as strains 1303T and 1310. Their colonies were circular, entire, opaque, convex and yellow. They were chitinase- and catalase-positive, reduced nitrate and grew at 16–37 °C (optimum, 30 °C), pH 5.0–10.0 (optimum, pH 7.0) and 0–2.0% NaCl (optimum, 1.0 %). Based on the 16S rRNA gene sequence analysis, they were classified as members of the genus Chitinophaga . Results of phylogenetic and phylogenomic analyses indicated that they formed a cluster with Chitinophaga eiseniae YC6729T, Chitinophaga qingshengii JN246T, Chitinophaga varians 10-7 W-9003T and Chitinophaga fulva G-6-1-13T. When the genomic sequences of strains 1303T and 1310 were compared with their close relatives, the average nucleotide identity and digital DNA–DNA hybridization values were below the cut-off levels. Phosphatidylethanolamine was the major polar lipid. MK-7 was the major respiratory quinone. iso-C15 : 0, C16 : 1  ω5c, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c) were the predominant fatty acids. Differential characteristics between both strains and their close relatives were also observed. Based on the distinctions in genotypic, phenotypic and chemotypic features, strains 1303T and 1310 represent members of a novel species of the genus Chitinophaga , for which the name Chitinophaga oryzae sp. nov. is proposed. The type strain is 1303T (=KACC 22075T=TBRC 12926T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 886-892 ◽  
Author(s):  
Kun Dong ◽  
Fang Chen ◽  
Yan Du ◽  
Gejiao Wang

A Gram-negative, strictly aerobic, yellow-pigmented rod, designated DK69T, was isolated from soil collected from the waste liquid treatment facility of Bafeng Pharmaceutical Company in the city of Enshi, Hubei Province, China. Phylogenetic analysis based on 16S rRNA gene sequences placed strain DK69T in the genus Flavobacterium of the family Flavobacteriaceae . The highest 16S rRNA gene sequence similarities were found with Flavobacterium cauense R2A-7T (96.9 %), Flavobacterium saliperosum AS 1.3801T (96.3 %) and Flavobacterium suncheonense GH29-5T (95.7 %). The major fatty acids (≥5 %) were iso-C15 : 0, iso-C17 : 1ω9c, C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 0 3-OH. The major polar lipids were phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid. The major respiratory quinone was menaquinone-6. The genomic DNA G+C content was 34.4 mol%. Strain DK69T represents a novel species of the genus Flavobacterium , for which the name Flavobacterium enshiense sp. nov. is proposed. The type strain is DK69T ( = CCTCC AB 2011144T  = KCTC 23775T). Emended descriptions of the genus Flavobacterium and Flavobacterium cauense , Flavobacterium saliperosum and Flavobacterium suncheonense are also proposed.


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 1003-1007 ◽  
Author(s):  
Hao Feng ◽  
Yanhua Zeng ◽  
Yili Huang

A Gram-staining-negative, non-motile, yellow-coloured, rod-shaped bacterium, designated S44T, was isolated from bankside soil of Xixi wetland, located in Zhejiang province, China. Growth of strain S44T was observed at 6–37 °C (optimum, 28 °C) and at pH 6.0–9.0 (optimum, 7.0). No growth occurred in the presence of >2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain S44T represented a member of the genus Flavobacterium , showing the highest sequence similarities to the sequences from Flavobacterium succinicans DSM 4002T (96.9 %), Flavobacterium reichenbachii WB 3.2-61T (96.6 %) and Flavobacterium glycines NCBI 105008T (96.5 %). The G+C content of the genomic DNA was 33.6 mol%. The predominant cellular fatty acids were C15 : 0, iso-C15 : 0, anteiso-C15 : 0 and summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH), and the major respiratory quinone was menaquinone 6 (MK-6). The major polar lipids were phosphatidylethanolamine, two unknown aminolipids, two unknown aminophospholipids and four unknown polar lipids. On the basis of the phenotypic and genotypic data, it is proposed that the isolate S44T be classified as representing a novel species of the genus Flavobacterium , for which the name Flavobacterium palustre sp. nov. is proposed. The type strain is S44T ( = CGMCC 1.12811T = NBRC 110389T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 442-448 ◽  
Author(s):  
Samson Viulu ◽  
Kohei Nakamura ◽  
Yurina Okada ◽  
Sakiko Saitou ◽  
Kazuhiro Takamizawa

A novel species of Fe(III)-reducing bacterium, designated strain OSK6T, belonging to the genus Geobacter , was isolated from lotus field mud in Japan. Strain OSK6T was isolated using a solid medium containing acetate, Fe(III)-nitrilotriacetate (NTA) and gellan gum. The isolate is a strictly anaerobic, Gram-negative, motile, straight rod-shaped bacterium, 0.6–1.9 µm long and 0.2–0.4 µm wide. The growth of the isolate occurred at 20–40 °C with optima of 30–37 °C and pH 6.5–7.5 in the presence of up to 0.5 g NaCl l−1. The G+C content of the genomic DNA was determined by HPLC to be 59.7 mol%. The major respiratory quinone was MK-8. The major fatty acids were 16 : 1ω7c and 16 : 0. Strain OSK6T was able to grow with Fe(III)-NTA, ferric citrate, amorphous iron (III) hydroxide and nitrate, but not with fumarate, malate or sulfate as electron acceptors. Among examined substrates grown with Fe(III)-NTA, the isolate grew on acetate, lactate, pyruvate and succinate. Analysis of the near full-length 16S rRNA gene sequence revealed that strain OSK6T is closely related to Geobacter daltonii and Geobacter toluenoxydans with 95.6 % similarity to the type strains of these species. On the basis of phylogenetic analysis and physiological tests, strain OSK6T is described as a representative of a novel species, Geobacter luticola sp. nov.; the type strain is OSK6T ( = DSM 24905T = JCM 17780T).


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 2018-2024 ◽  
Author(s):  
Joong-Jae Kim ◽  
Eiko Kanaya ◽  
Hang-Yeon Weon ◽  
Yuichi Koga ◽  
Kazufumi Takano ◽  
...  

A strictly aerobic, Gram-negative, yellow-pigmented, non-spore-forming rod, designated 15C3T, was isolated from aerobic leaf-and-branch compost at EXPO Park in Osaka, Japan. Growth was observed at 9–33 °C (optimum 25 °C) and pH 5.6–7.9 (optimum pH 6.1–7.0). No growth occurred with >2 % (w/v) NaCl. Strain 15C3T reduced nitrate to nitrogen and showed catalase activity but not oxidase activity. The predominant fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH). The isolate contained phosphatidylethanolamine as the major polar lipid and menaquinone-6 as the major respiratory quinone. The G+C content of the genomic DNA of strain 15C3T was 33.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 15C3T belonged to the genus Flavobacterium and was most closely related to Flavobacterium hercynium WB 4.2-33T (96.9 % sequence similarity). On the basis of phenotypic and phylogenetic distinctiveness, strain 15C3T is considered to represent a novel species in the genus Flavobacterium , for which the name Flavobacterium compostarboris sp. nov. is proposed. The type strain is 15C3T ( = KACC 14224T  = JCM 16527T). Emended descriptions of F. hercynium , Flavobacterium resistens and Flavobacterium johnsoniae are also given.


2012 ◽  
Vol 62 (Pt_7) ◽  
pp. 1647-1652 ◽  
Author(s):  
Akio Tani ◽  
Nurettin Sahin ◽  
Kazuhide Kimbara

A pink-pigmented, facultatively methylotrophic bacterium, strain 35aT, was isolated from the leaves of Oxalis corniculata. Cells of strain 35aT were Gram-reaction-negative, motile, non-spore-forming rods. The highest 16S rRNA gene pairwise sequence similarities for strain 35aT were found with the strains of Methylobacterium iners 5317S-33T (96.7 %), ‘Methylobacterium soli’ YIM 48816 (96.6 %) and Methylobacterium jeotgali S2R03-9T (96.3 %). 16S rRNA gene sequence similarities with the type strains of all other recognized species of the genus Methylobacterium were below 96 %. Major cellular fatty acids were C18 : 1ω7c, C18 : 0 and C16 : 0. The results of DNA–DNA hybridization experiments, analysis of cpn60 gene sequences, fatty acid profiles, whole-cell MALDI-TOF/MS spectral pattern analysis, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 35aT from its nearest phylogenetic neighbours. Strain 35aT is therefore considered to represent a novel species within the genus Methylobacterium , for which the name Methylobacterium oxalidis sp. nov. is proposed. The type strain is 35aT ( = DSM 24028T = NBRC 107715T).


Author(s):  
Ye Lin Seo ◽  
Jaejoon Jung ◽  
Chi-une Song ◽  
Yong Min Kwon ◽  
Hye Su Jung ◽  
...  

A Gram-stain-negative, orange-pigmented and strictly aerobic bacterium, designated strain MJ115T, was isolated from seawater in Pohang, South Korea. Cells were non-motile rods and showed positive reactions for catalase and oxidase tests. Growth of strain MJ115T was observed at 4–35 °C (optimum, 30 °C), pH 6.0–7.0 (optimum, pH 6.5) and in the presence of 0–8.0 % (w/v) NaCl (optimum, 2.0%). Strain MJ115T contained iso-C15 : 0, anteiso-C15 : 0, anteiso-C17 : 1  ω9c, C17 : 0 2-OH, iso-C16 : 0 3-OH, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c) as major cellular fatty acids and menaquinone-6 as the major respiratory quinone. Phosphatidylethanolamine, two unidentified aminolipids and four unidentified lipids were detected as major polar lipids. The G+C content of the genomic DNA was 40.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain MJ115T formed a phyletic lineage with Nonlabens marinus S1-08T, Nonlabens agnitus JC2678T and Nonlabens antarcticus AKS 622T within the genus Nonlabens . Strain MJ115T was also most closely related to N. marinus S1-08T, N. agnitus JC2678T and N. antarcticus AKS 622T with 96.5, 96.4 and 96.0 % 16S rRNA sequence similarities, respectively. Here it is proposed that strain MJ115T represents a new species of the genus Nonlabens , for which the name Nonlabens ponticola sp. nov. is proposed. The type strain is MJ115T (=KCTC 72237T=NBRC 113963T). In addition, the comparison of the whole genome sequences and phenotypic features suggested that Nonlabens tegetincola and Nonlabens sediminis belong to the same species. Therefore, it is proposed that N. sediminis is reclassified as a later heterotypic synonym of N. tegetincola .


Sign in / Sign up

Export Citation Format

Share Document