scholarly journals Hospital water filters as a source of Mycobacterium avium complex

2010 ◽  
Vol 59 (10) ◽  
pp. 1198-1202 ◽  
Author(s):  
Joseph O. Falkinham

Bronchoscopes and the filters used for washing them were found to yield high numbers of Mycobacterium avium isolates sharing the same repetitive sequence-based PCR (rep-PCR) fingerprint pattern as M. avium isolates recovered from patient samples collected by bronchoscopy. Water and biofilm samples collected from the bronchoscopy preparation laboratory yielded M. avium, Mycobacterium intracellulare, Mycobacterium malmoense and Mycobacterium gordonae. Several M. avium and M. intracellulare isolates from water samples in the bronchoscopy laboratory had rep-PCR patterns matching those of patient bronchoscopy isolates. Five of the 22 (23 %) M. avium patient bronchoscopy isolates and 42 of the 56 (75 %) M. intracellulare patient bronchoscopy isolates could have been due to contamination from the water supply.

2008 ◽  
Vol 74 (10) ◽  
pp. 3094-3098 ◽  
Author(s):  
Rachel Thomson ◽  
Robyn Carter ◽  
Chris Gilpin ◽  
Chris Coulter ◽  
Megan Hargreaves

ABSTRACT Several protocols for isolation of mycobacteria from water exist, but there is no established standard method. This study compared methods of processing potable water samples for the isolation of Mycobacterium avium and Mycobacterium intracellulare using spiked sterilized water and tap water decontaminated using 0.005% cetylpyridinium chloride (CPC). Samples were concentrated by centrifugation or filtration and inoculated onto Middlebrook 7H10 and 7H11 plates and Lowenstein-Jensen slants and into mycobacterial growth indicator tubes with or without polymyxin, azlocillin, nalidixic acid, trimethoprim, and amphotericin B. The solid media were incubated at 32°C, at 35°C, and at 35°C with CO2 and read weekly. The results suggest that filtration of water for the isolation of mycobacteria is a more sensitive method for concentration than centrifugation. The addition of sodium thiosulfate may not be necessary and may reduce the yield. Middlebrook M7H10 and 7H11 were equally sensitive culture media. CPC decontamination, while effective for reducing growth of contaminants, also significantly reduces mycobacterial numbers. There was no difference at 3 weeks between the different incubation temperatures.


Microbiology ◽  
2010 ◽  
Vol 156 (3) ◽  
pp. 687-694 ◽  
Author(s):  
Caroline Cayrou ◽  
Christine Turenne ◽  
Marcel A. Behr ◽  
Michel Drancourt

Mycobacterium avium complex (MAC) currently comprises eight species of environmental and animal-associated, slowly-growing mycobacteria: Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium chimaera, Mycobacterium colombiense, Mycobacterium arosiense, Mycobacterium bouchedurhonense, Mycobacterium marseillense and Mycobacterium timonense. In humans, MAC organisms are responsible for opportunistic infections whose unique epidemiology remains poorly understood, in part due to the lack of a genotyping method applicable to all eight MAC species. In this study we developed multispacer sequence typing (MST), a sequencing-based method, for the genotyping of MAC organisms. An alignment of the genome sequence of M. avium subsp. hominissuis strain104 and M. avium subsp. paratuberculosis strain K-10 revealed621 intergenic spacers <1000 bp. From these, 16 spacers were selected that ranged from 300 to 800 bp and contained a number of variable bases, <50 within each of the 16 spacers. Four spacers were successfully PCR-amplified and sequenced in 11 reference strains. Combining the sequence of these four spacers in 106 MAC organisms, including 83 M. avium, 11 M. intracellulare, six M. chimaera, two M. colombiense and one each of M. arosiense, M. bouchedurhonense, M. marseillense and M. timonense, yielded a total of 45 spacer types, with an index of discrimination of 0.94. Each spacer type was specific for a species and certain spacer types were specific for subspecies of M. avium. MST is a new method for genotyping of organisms belonging to any one of the eight MAC species tested in this study.


1988 ◽  
Vol 26 (5) ◽  
pp. 1034-1036 ◽  
Author(s):  
L Graham ◽  
N G Warren ◽  
A Y Tsang ◽  
H P Dalton

2006 ◽  
Vol 13 (9) ◽  
pp. 991-996 ◽  
Author(s):  
Makeda Semret ◽  
Douwe Bakker ◽  
Nonie Smart ◽  
Ingrid Olsen ◽  
Kaare Haslov ◽  
...  

ABSTRACT For over a century, purified protein derivatives (PPD) have been used to detect mycobacterial infections in humans and livestock. Among these, reagents to detect infections by Mycobacterium avium complex organisms have been produced, but the utility of these reagents has not been clearly established due in part to limited biologic and immunologic standardization. Because there is little information about the strains used to produce these reagents (avian PPD, intracellulare PPD, scrofulaceum PPD, and Johnin), we have performed genetic characterizations of strains used to produce these products. Sequence analysis of 16S rRNA and the hsp65 gene provided results concordant with species designations provided for M. avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum organisms. For M. avium strains, comparative genomic hybridization was performed on a whole-genome DNA microarray, revealing one novel 7.9-kilobase genomic deletion in certain Johnin-producing strains, in addition to genomic variability inherent to the particular M. avium subspecies. Our findings indicate that considerable genomic differences exist between organisms used for reagents and the infecting organism being studied. These results serve as a baseline for potency studies of different preparations and should aid in comparative studies of newly discovered antigens for the diagnosis of infection and disease by M. avium complex organisms.


Sign in / Sign up

Export Citation Format

Share Document