scholarly journals Vibrio parahaemolyticus ExsE is requisite for initial adhesion and subsequent type III secretion system 1-dependent autophagy in HeLa cells

Microbiology ◽  
2012 ◽  
Vol 158 (9) ◽  
pp. 2303-2314 ◽  
Author(s):  
Daniel P. Erwin ◽  
Seth D. Nydam ◽  
Douglas R. Call
Oncotarget ◽  
2017 ◽  
Vol 8 (39) ◽  
pp. 65809-65822 ◽  
Author(s):  
George Osei-Adjei ◽  
He Gao ◽  
Ying Zhang ◽  
Lingyu Zhang ◽  
Wenhui Yang ◽  
...  

Microbiology ◽  
2009 ◽  
Vol 155 (3) ◽  
pp. 837-851 ◽  
Author(s):  
Xiaohui Zhou ◽  
Michael E. Konkel ◽  
Douglas R. Call

The Vibrio parahaemolyticus type III secretion system 1 (T3SS1) induces cytotoxicity in mammalian epithelial cells. We characterized the cell death phenotype in both epithelial (HeLa) and monocytic (U937) cell lines following infection with V. parahaemolyticus. Using a combination of the wild-type strain and gene knockouts, we confirmed that V. parahaemolyticus strain NY-4 was able to induce cell death in both cell lines via a T3SS1-dependent mechanism. Bacterial contact, but not internalization, was required for T3SS1-induced cytotoxicity. The mechanism of cell death involves formation of a pore structure on the surface of infected HeLa and U937 cells, as demonstrated by cellular swelling, uptake of cell membrane-impermeable dye and protection of cytotoxicity by osmoprotectant (PEG3350). Western blot analysis showed that poly ADP ribose polymerase (PARP) was not cleaved and remained in its full-length active form. This result was evident for seven different V. parahaemolyticus strains. V. parahaemolyticus-induced cytotoxicity was not inhibited by addition of the pan-caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK) or the caspase-1 inhibitor N-acetyl-tyrosyl-valyl-alanyl-aspartyl-aldehyde (Ac-YVAD-CHO); thus, caspases were not involved in T3SS1-induced cytotoxicity. DNA fragmentation was not evident following infection and autophagic vacuoles were not observed after monodansylcadaverine staining. We conclude that T3SS1 of V. parahaemolyticus strain NY-4 induces a host cell death primarily via oncosis rather than apoptosis, pyroptosis or autophagy.


2006 ◽  
Vol 74 (2) ◽  
pp. 1032-1042 ◽  
Author(s):  
Takahiro Ono ◽  
Kwon-Sam Park ◽  
Mayumi Ueta ◽  
Tetsuya Iida ◽  
Takeshi Honda

ABSTRACT Vibrio parahaemolyticus, a gram-negative marine bacterium, is an important pathogen causing food-borne gastroenteritis or septicemia. Recent genome sequencing of the RIMD2210633 strain (a Kanagawa phenomenon-positive clinical isolate of serotype O3:K6) revealed that the strain has two sets of gene clusters that encode the type III secretion system (TTSS) apparatus. The first cluster, TTSS1, is located on the large chromosome, and the second, TTSS2, is on the small chromosome. Previously, we reported that TTSS1 is involved in the cytotoxicity of the RIMD2210633 strain against HeLa cells. Here, we analyzed proteins secreted via the TTSS apparatus encoded by TTSS1 by using two-dimensional gel electrophoresis and identified the proteins encoded by genes VP1680, VP1686, and VPA450. To investigate the roles of those secreted proteins, we constructed and analyzed a series of deletion mutants. Flow cytometry analysis using fluorescence-activated cell sorting with fluorescein isothiocyanate-labeled annexin V demonstrated that the TTSS1-dependent cell death was by apoptosis. The cytotoxicity to HeLa cells was related to one of the newly identified secreted proteins encoded by VP1680. Adenylate cyclase fusion protein studies proved that the newly identified secreted proteins were translocated into HeLa cells. Thus, these appear to be the TTSS effector proteins in V. parahaemolyticus.


2005 ◽  
Vol 73 (7) ◽  
pp. 4327-4337 ◽  
Author(s):  
Kristen J. Kanack ◽  
J. Adam Crawford ◽  
Ichiro Tatsuno ◽  
Mohamed A. Karmali ◽  
James B. Kaper

ABSTRACT Enteropathogenic Escherichia coli (EPEC) is a major bacterial cause of infantile diarrhea in developing countries and is the prototype for a group of gastrointestinal pathogens causing characteristic attaching and effacing (A/E) histopathology on intestinal epithelia. A/E pathogens utilize a type III secretion system (TTSS), encoded by the locus of enterocyte effacement (LEE) pathogenicity island, to deliver effector proteins into host cells. Here, we investigate sequence divergence of the LEE-encoded SepZ protein and identify it as a TTSS-secreted and -translocated molecule. SepZ is hypervariable among A/E pathogens, with sequences sharing between 60 to 81% amino acid identity with SepZ of EPEC. A SepZ-CyaA fusion was secreted and translocated into HeLa cells in a TTSS-dependent manner. Additionally, we determined that the first 20 amino acids of SepZ were sufficient to direct its translocation. In contrast to previous studies suggesting a role in invasion and the structure and/or regulation of the TTSS, we found that SepZ does not mediate uptake of EPEC into host cells or affect translocation and tyrosine phosphorylation of the translocated intimin receptor. Immunohistochemistry reveals that, after an extended HeLa cell infection, accumulated SepZ can be detected beneath the site of bacterial attachment in a subset of pedestal regions. To indicate its newly identified status as a translocated effector protein, we propose to rename SepZ as EspZ.


2015 ◽  
Vol 362 (21) ◽  
pp. fnv173 ◽  
Author(s):  
Tomotaka Tanabe ◽  
Katsushiro Miyamoto ◽  
Hiroshi Tsujibo ◽  
Shigeo Yamamoto ◽  
Tatsuya Funahashi

Sign in / Sign up

Export Citation Format

Share Document