initial adhesion
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 72)

H-INDEX

48
(FIVE YEARS 7)

2022 ◽  
Vol 8 ◽  
Author(s):  
Yashan Feng ◽  
Lei Chang ◽  
Shijie Zhu ◽  
Yongxin Yang ◽  
Baoli Wei ◽  
...  

The uncontrollable rapid degradation rate of the Mg alloy substrate limited its clinical application, and implant-associated infections have been reported to be the main reason for the secondary surgery of orthopedic implantation. The aim of this study was to produce a multifunctional coating on magnesium-based alloys that have improved corrosion resistance, bioactivity, and antibacterial properties through the preparation of polyelectrolytic multilayers (PEMs) consisting of chitosan (CS) and sodium hyaluronate (HA) on silane-modified strontium-substituted hydroxyapatite (hereafter referred to as Bil (SH + CS)/SrHA). The multifunctional coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The results showed the polyelectrolyte complex SH/CS layer to be uniformly and tightly attached on to the surface of silane-treated SrHA. At the same time, a potentiodynamic polarization test and hydrogen evolution test showed the Bil (SH + CS)/SrHA coatings to exhibit superior corrosion resistance than bulk Mg-based alloys. The results of the cell–surface interactions revealed Bil (SH + CS)/SrHA coatings to be in favor of cell initial adhesion and more beneficial to the proliferation and growth of cells with the processing of co-culture. In addition, antibacterial tests demonstrated the strong bactericidal effect of Bil (SH + CS)/SrHA coatings against both Escherichia coli (E. coli) and Staphylococcus (S. aureus), suggesting that Bil (SH + CS)/SrHA coatings can successfully achieve multifunctionality with enhanced corrosion resistance, biocompatibility, and antibacterial properties.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Shane Cristy ◽  
Danielle Garsin ◽  
Michael Lorenz

Candida albicans exists as a member of the commensal flora of the skin and gut where many complex polymicrobial interactions occur with genera such as Pseudomonas, Staphylococcus, and Streptococcus. Some of these interactions potentiate or inhibit virulence. The bacterial gastrointestinal commensal speciesEnterococcus faecalisproduces a small peptide, EntV, that modulates C. albicans virulence. The active 68 amino acid EntV peptide inhibits biofilm formationin vitro; biofilm-related infections are difficult to treat with current therapeutics. EntV also attenuates fungal virulence in a Caenorhabditis elegansinfection model and a murine oral candidiasis model. We sought to identify the regions of EntV responsible for the anti-fungal activity, and based on structural information, we hypothesized that it could be localized to a single helix of the mature peptide. In this study, we report that smaller peptides derived from this helix ranging from 12 to 16 amino acids have equal to improved efficacy in inhibiting C. albicans virulence andbiofilm formation. These smaller peptides attenuate virulence in the C. elegans infection model, inhibit initial adhesion to abiotic surfaces, and reduce the size of mature biofilms measured by confocal microscopy. Further trimming of these peptides to fewer than 11 amino acids reduces and eventually eliminates activity. These data indicate that EntV-derived peptides warrant further investigation as potential non-fungicidal additives to medical devices and antifungal therapeutics.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1523
Author(s):  
Young-Gyun Kim ◽  
Byung-Min Park ◽  
Jong-Keun Choi ◽  
Dong-Hoon Jang ◽  
Kwan-Young Han

Recent display technology has changed substantially from flat-type displays to bended displays. As a result, the lamination process for bonding the panel substrates and bended window glass has become difficult due to the changes in display shape, and the use of optically clear adhesive (OCA) makes it impossible to rework defective substrates due to residue problems. Therefore, it is necessary to research and develop a substrate-surface treatment that maintains the initial adhesion and is reusable via the complete removal of impurities during delamination in order to enable rework. In this paper, the possibility of maintaining adhesive force and reusing substrates was confirmed through the surface treatment of substrates and OCA using various materials. We found that a surface coating and a cooling treatment of additional substrates completely removed the impurities that remained on the substrates during reworking. These results could contribute to improving lamination-process technology and the productivity of the various forms of next-generation displays that are currently under development.


2021 ◽  
Author(s):  
Jules D. P. Valentin ◽  
Hervé Straub ◽  
Franziska Pietsch ◽  
Marion Lemare ◽  
Christian H. Ahrens ◽  
...  

AbstractPseudomonas aeruginosa biofilms exhibit an intrinsic resistance to antibiotics and constitute a considerable clinical threat. In cystic fibrosis, a common feature of biofilms formed by P. aeruginosa in the airway is the occurrence of mutants deficient in flagellar motility. This study investigates the impact of flagellum deletion on the structure and antibiotic tolerance of P. aeruginosa biofilms, and highlights a role for the flagellum in adaptation and cell survival during biofilm development. Mutations in the flagellar hook protein FlgE influence greatly P. aeruginosa biofilm structuring and antibiotic tolerance. Phenotypic analysis of the flgE knockout mutant compared to the wild type (WT) reveal increased fitness under planktonic conditions, reduced initial adhesion but enhanced formation of microcolony aggregates in a microfluidic environment, and decreased expression of genes involved in exopolysaccharide formation. Biofilm cells of the flgE knock-out mutant display enhanced tolerance towards multiple antibiotics, whereas its planktonic cells show similar resistance to the WT. Confocal microscopy of biofilms demonstrates that gentamicin does not affect the viability of cells located in the inner part of the flgE knock-out mutant biofilms due to reduced penetration. These findings suggest that deficiency in flagellar proteins like FlgE in biofilms and in cystic fibrosis infections represent phenotypic and evolutionary adaptations that alter the structure of P. aeruginosa biofilms conferring increased antibiotic tolerance.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 4029
Author(s):  
Hannah Kurz ◽  
Lamprini Karygianni ◽  
Aikaterini Argyropoulou ◽  
Elmar Hellwig ◽  
Alexios Leandros Skaltsounis ◽  
...  

Given the undesirable side effects of commercially used mouth rinses that include chemically synthesized antimicrobial compounds such as chlorhexidine, it is essential to discover novel antimicrobial substances based on plant extracts. The aim of this study was to examine the antimicrobial effect of Inula viscosa extract on the initial microbial adhesion in the oral cavity. Individual test splints were manufactured for the participants, on which disinfected bovine enamel samples were attached. After the initial microbial adhesion, the biofilm-covered oral samples were removed and treated with different concentrations (10, 20, and 30 mg/mL) of an I. viscosa extract for 10 min. Positive and negative controls were also sampled. Regarding the microbiological parameters, the colony-forming units (CFU) and vitality testing (live/dead staining) were examined in combination with fluorescence microscopy. An I. viscosa extract with a concentration of 30 mg/mL killed the bacteria of the initial adhesion at a rate of 99.99% (log10 CFU value of 1.837 ± 1.54). Compared to the negative control, no killing effects were determined after treatment with I. viscosa extract at concentrations of 10 mg/mL (log10 CFU value 3.776 ± 0.831; median 3.776) and 20 mg/mL (log10 CFU value 3.725 ± 0.300; median 3.711). The live/dead staining revealed a significant reduction (p < 0.0001) of vital adherent bacteria after treatment with 10 mg/mL of I. viscosa extract. After treatment with an I. viscosa extract with a concentration of 30 mg/mL, no vital bacteria could be detected. For the first time, significant antimicrobial effects on the initial microbial adhesion in in situ oral biofilms were reported for an I. viscosa extract.


2021 ◽  
Vol 9 (11) ◽  
pp. 2213
Author(s):  
Gubesh Gunaratnam ◽  
Johanna Dudek ◽  
Philipp Jung ◽  
Sören L. Becker ◽  
Karin Jacobs ◽  
...  

Caries is one of the most prevalent diseases worldwide, which is caused by the degradation of the tooth enamel surface. In earlier research the opportunistic pathogen Candida albicans has been associated with the formation of caries in children. Colonization of teeth by C. albicans starts with the initial adhesion of individual yeast cells to the tooth enamel surface. In this study, we visualized the initial colonization of C. albicans yeast cells on pellicle-covered enamel by scanning electron microscopy. To quantitatively unravel the initial adhesion strength, we applied fluidic force microscopy-based single-cell force spectroscopy to examine the key adhesion parameters adhesion force, rupture length and de-adhesion work. We analyzed single saliva-treated or untreated yeast cells on tooth enamel specimens with or without salivary pellicle. Under all tested conditions, adhesion forces in the lower nanonewton range were determined. Furthermore, we have found that all adhesion parameters were enhanced on the pellicle-covered compared to the uncovered enamel. Our data suggest that initial adhesion occurs through a strong interaction between yeast cell wall-associated adhesins and the salivary pellicle. Future SCFS studies may show whether specific management of the salivary pellicle reduces the adhesion of C. albicans on teeth and thus contributes to caries prophylaxis.


Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1307
Author(s):  
Zhengchen Su ◽  
Thomas R. Shelite ◽  
Yuan Qiu ◽  
Qing Chang ◽  
Maki Wakamiya ◽  
...  

Introduction: Intracellular cAMP receptor exchange proteins directly activated by cAMP 1 (EPAC1) regulate obligate intracellular parasitic bacterium rickettsial adherence to and invasion into vascular endothelial cells (ECs). However, underlying precise mechanism(s) remain unclear. The aim of the study is to dissect the functional role of the EPAC1-ANXA2 signaling pathway during initial adhesion of rickettsiae to EC surfaces. Methods: In the present study, an established system that is anatomically based and quantifies bacterial adhesion to ECs in vivo was combined with novel fluidic force microscopy (FluidFM) to dissect the functional role of the EPAC1-ANXA2 signaling pathway in rickettsiae–EC adhesion. Results: The deletion of the EPAC1 gene impedes rickettsial binding to endothelium in vivo. Rickettsial OmpB shows a host EPAC1-dependent binding strength on the surface of a living brain microvascular EC (BMEC). Furthermore, ectopic expression of phosphodefective and phosphomimic mutants replacing tyrosine (Y) 23 of ANXA2 in ANXA2-knock out BMECs results in different binding force to reOmpB in response to the activation of EPAC1. Conclusions: EPAC1 modulates rickettsial adhesion, in association with Y23 phosphorylation of the binding receptor ANXA2. Underlying mechanism(s) should be further explored to delineate the accurate role of cAMP-EPAC system during rickettsial infection.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5229
Author(s):  
Yuchen Sun ◽  
Ran Lu ◽  
Jingming Liu ◽  
Xin Wang ◽  
Haitao Dong ◽  
...  

The soft tissue sealing at the transmucal portion of implants is vital for the long-term stability of implants. Hydrogenated titanium nanotubes (H2-TNTs) as implant surface treatments were proved to promote the adhesion of human gingival fibroblasts (HGFs) and have broad usage as drug delivery systems. Bovine serum albumin (BSA) as the most abundant albumin in body fluid was crucial for cell adhesion and was demonstrated as a normal loading protein. As the first protein arriving on the surface of the implant, albumin plays an important role in initial adhesion of soft tissue cells, it is also a common carrier, transferring and loading different endogenous and exogenous substances, ions, drugs, and other small molecules. The aim of the present work was to investigate whether BSA-loaded H2-TNTs could promote the early adhesion of HGFs; H2-TNTs were obtained by hydrogenated anodized titanium dioxide nanotubes (TNTs) in thermal treatment, and BSA was loaded in the nanotubes by vacuum drying; our results showed that the superhydrophilicity of H2-TNTs is conducive to the loading of BSA. In both hydrogenated titanium nanotubes and non-hydrogenated titanium nanotubes, a high rate of release was observed over the first hour, followed by a period of slow and sustained release; however, BSA-loading inhibits the early adhesion of human gingival fibroblasts, and H2-TNTs has the best promoting effect on cell adhesion. With the release of BSA after 4 h, the inhibitory effect of BSA on cell adhesion was weakened.


2021 ◽  
Vol 22 (17) ◽  
pp. 9335
Author(s):  
Petra Chocholata ◽  
Vlastimil Kulda ◽  
Jana Dvorakova ◽  
Monika Supova ◽  
Margit Zaloudkova ◽  
...  

Bone tissue engineering tries to simulate natural behavior of hard tissues. This study aimed to produce scaffolds based on polyvinyl alcohol (PVA) and hyaluronic acid (HA) with hydroxyapatite (HAp) incorporated in two different ways, by in situ synthesis and physical mixing of pre-prepared HAp. In situ synthesis resulted in calcium deficient form of HAp with lower crystallinity. The proliferation of human osteoblast-like cells MG-63 proved to be better in the scaffolds with in situ synthesized HAp compared to those with physically mixed pre-prepared HAp. For scaffolds with PVA/HA/HAp ratio 3:1:2, there was significantly higher initial adhesion (p = 0.0440), as well as the proliferation in the following days (p < 0.001). It seemed to be advantageous improve the properties of the scaffold by in situ synthesizing of HAp directly in the organic matrix.


Sign in / Sign up

Export Citation Format

Share Document