The paradoxical cyanide-stimulated respiration of Zymomonas mobilis: cyanide sensitivity of alcohol dehydrogenase (ADH II)

Microbiology ◽  
2003 ◽  
Vol 149 (7) ◽  
pp. 1739-1744 ◽  
Author(s):  
Uldis Kalnenieks ◽  
Malda M. Toma ◽  
Nina Galinina ◽  
Robert K. Poole

The respiratory inhibitor cyanide stimulates growth of the ethanologenic bacterium Zymomonas mobilis, perhaps by diverting reducing equivalents from respiration to ethanol synthesis, thereby minimizing accumulation of toxic acetaldehyde. This study sought to identify cyanide-sensitive components of respiration. In aerobically grown, permeabilized Z. mobilis cells, addition of 200 μM cyanide caused gradual inhibition of ADH II, the iron-containing alcohol dehydrogenase isoenzyme, which, in aerobic cultures, might be oxidizing ethanol and supplying NADH to the respiratory chain. In membrane preparations, NADH oxidase was inhibited more rapidly, but to a lesser extent, than ADH II. The time-course of inhibition of whole-cell respiration resembled that of NADH oxidase, yet the inhibition was almost complete, and was accompanied by an increase of intracellular NADH concentration. Cyanide did not significantly affect the activity of ADH I, the zinc-containing alcohol dehydrogenase isoenzyme. When an aerobic batch culture was grown in the presence of 200 μM cyanide, cyanide-resistant ADH II activity was observed, its appearance correlating with the onset of respiration. It is concluded that the membrane-associated respiratory chain, but not ADH II, is responsible for the whole-cell cyanide sensitivity, while the cyanide-resistant ADH II is needed for respiration in the presence of cyanide, and represents an adaptive response of Z. mobilis to cyanide, analogous to the induction of alternative terminal oxidases in other bacteria.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Reinis Rutkis ◽  
Inese Strazdina ◽  
Zane Lasa ◽  
Per Bruheim ◽  
Uldis Kalnenieks

Abstract Objective Zymomonas mobilis is an alpha-proteobacterium with a rapid ethanologenic pathway, involving Entner–Doudoroff (E–D) glycolysis, pyruvate decarboxylase (Pdc) and two alcohol dehydrogenase (ADH) isoenzymes. Pyruvate is the end-product of the E–D pathway and the substrate for Pdc. Construction and study of Pdc-deficient strains is of key importance for Z. mobilis metabolic engineering, because the pyruvate node represents the central branching point, most novel pathways divert from ethanol synthesis. In the present work, we examined the aerobic metabolism of a strain with partly inactivated Pdc. Results Relative to its parent strain the mutant produced more pyruvate. Yet, it also yielded more acetaldehyde, the product of the Pdc reaction and the substrate for ADH, although the bulk ADH activity was similar in both strains, while the Pdc activity in the mutant was reduced by half. Simulations with the kinetic model of Z. mobilis E-D pathway indicated that, for the observed acetaldehyde to ethanol production ratio in the mutant, the ratio between its respiratory NADH oxidase and ADH activities should be significantly higher, than the measured values. Implications of this finding for the directionality of the ADH isoenzyme operation in vivo and interactions between ADH and Pdc are discussed.


Author(s):  
Bei Zhang ◽  
Liuyun Bian ◽  
Peiyu Huang ◽  
Ling Zhao ◽  
Yijun Chen ◽  
...  
Keyword(s):  

Life Sciences ◽  
1991 ◽  
Vol 49 (25) ◽  
pp. 1929-1934 ◽  
Author(s):  
Enrique Baraona ◽  
Akira Yokoyama ◽  
Hiromasa Ishii ◽  
Rolando Hernández-Muñoz ◽  
Toshikazu Takagi ◽  
...  

1992 ◽  
Vol 67 (6) ◽  
pp. 1698-1701 ◽  
Author(s):  
S. M. Thompson ◽  
B. H. Gahwiler

1. The effects of the gamma-aminobutyric acid (GABA) uptake blocker tiagabine on inhibitory synaptic potentials (IPSPs) were examined with microelectrode and whole-cell recording from CA3 pyramidal cells in rat hippocampal slice cultures. 2. Tiagabine (10-25 microM) greatly prolonged the duration of monosynaptic IPSPs elicited in the presence of excitatory amino acid antagonists but had no effect on their amplitude. Part of the prolonged time course resulted from a GABAB receptor-mediated component that was not detectable under control conditions. 3. The mean decay time constant of the underlying GABAA receptor-mediated synaptic current was increased from 16 to 250 ms. Spontaneous miniature IPSPs recorded with whole-cell clamp were unaffected by tiagabine. Pentobarbital sodium, in contrast, increased the decay time constant of both evoked and spontaneous GABAA-mediated currents. 4. Tiagabine (25 microM) inhibited spontaneous and evoked epileptiform bursting induced by increasing the extracellular potassium concentration to 8 mM. 5. We conclude that GABA uptake plays a significant role in determining the time course of evoked IPSPs and also limits the likelihood that GABAB receptors are activated.


PLoS ONE ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. e0231965
Author(s):  
Pingdong Liang ◽  
Xuan Fang ◽  
Yuyao Hu ◽  
Ming Yuan ◽  
Daniel A. Raba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document