scholarly journals Ethanologenesis and respiration in a pyruvate decarboxylase-deficient Zymomonas mobilis

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Reinis Rutkis ◽  
Inese Strazdina ◽  
Zane Lasa ◽  
Per Bruheim ◽  
Uldis Kalnenieks

Abstract Objective Zymomonas mobilis is an alpha-proteobacterium with a rapid ethanologenic pathway, involving Entner–Doudoroff (E–D) glycolysis, pyruvate decarboxylase (Pdc) and two alcohol dehydrogenase (ADH) isoenzymes. Pyruvate is the end-product of the E–D pathway and the substrate for Pdc. Construction and study of Pdc-deficient strains is of key importance for Z. mobilis metabolic engineering, because the pyruvate node represents the central branching point, most novel pathways divert from ethanol synthesis. In the present work, we examined the aerobic metabolism of a strain with partly inactivated Pdc. Results Relative to its parent strain the mutant produced more pyruvate. Yet, it also yielded more acetaldehyde, the product of the Pdc reaction and the substrate for ADH, although the bulk ADH activity was similar in both strains, while the Pdc activity in the mutant was reduced by half. Simulations with the kinetic model of Z. mobilis E-D pathway indicated that, for the observed acetaldehyde to ethanol production ratio in the mutant, the ratio between its respiratory NADH oxidase and ADH activities should be significantly higher, than the measured values. Implications of this finding for the directionality of the ADH isoenzyme operation in vivo and interactions between ADH and Pdc are discussed.

2005 ◽  
Vol 71 (2) ◽  
pp. 1109-1113 ◽  
Author(s):  
Roger S. Bongers ◽  
Marcel H. N. Hoefnagel ◽  
Michiel Kleerebezem

ABSTRACT Efficient conversion of glucose to acetaldehyde is achieved by nisin-controlled overexpression of Zymomonas mobilis pyruvate decarboxylase (pdc) and Lactococcus lactis NADH oxidase (nox) in L. lactis. In resting cells, almost 50% of the glucose consumed could be redirected towards acetaldehyde by combined overexpression of pdc and nox under anaerobic conditions.


Microbiology ◽  
2003 ◽  
Vol 149 (7) ◽  
pp. 1739-1744 ◽  
Author(s):  
Uldis Kalnenieks ◽  
Malda M. Toma ◽  
Nina Galinina ◽  
Robert K. Poole

The respiratory inhibitor cyanide stimulates growth of the ethanologenic bacterium Zymomonas mobilis, perhaps by diverting reducing equivalents from respiration to ethanol synthesis, thereby minimizing accumulation of toxic acetaldehyde. This study sought to identify cyanide-sensitive components of respiration. In aerobically grown, permeabilized Z. mobilis cells, addition of 200 μM cyanide caused gradual inhibition of ADH II, the iron-containing alcohol dehydrogenase isoenzyme, which, in aerobic cultures, might be oxidizing ethanol and supplying NADH to the respiratory chain. In membrane preparations, NADH oxidase was inhibited more rapidly, but to a lesser extent, than ADH II. The time-course of inhibition of whole-cell respiration resembled that of NADH oxidase, yet the inhibition was almost complete, and was accompanied by an increase of intracellular NADH concentration. Cyanide did not significantly affect the activity of ADH I, the zinc-containing alcohol dehydrogenase isoenzyme. When an aerobic batch culture was grown in the presence of 200 μM cyanide, cyanide-resistant ADH II activity was observed, its appearance correlating with the onset of respiration. It is concluded that the membrane-associated respiratory chain, but not ADH II, is responsible for the whole-cell cyanide sensitivity, while the cyanide-resistant ADH II is needed for respiration in the presence of cyanide, and represents an adaptive response of Z. mobilis to cyanide, analogous to the induction of alternative terminal oxidases in other bacteria.


1963 ◽  
Vol 61 (3) ◽  
pp. 353-363 ◽  
Author(s):  
A. L. Olitzki ◽  
Dina Godinger

1. Salmonella typhi, strain Ty2, grown in vivo and employed as acetone-dried vaccine possessed a higher immunizing potency than the descendants of the same parent strain grown in vitro and employed as vaccine.2. When 2 × 108in vitro-grown bacteria were employed as challenge, the immunizing effects of both types of vaccine were more marked than after administration of 2 × 108in vivo-grown bacteria as challenge.3. The higher potency of the in vivo-grown vaccine was apparent in all experiments, whether the challenge strain was grown in vivo or in vitro.4. Immunogenic substances were isolated from infected organs of mice and guinea-pigs, and an immunogenic substance from the peritoneal fluid of the infected guinea-pigs was concentrated by precipitation with ethanol.


2001 ◽  
Vol 183 (4) ◽  
pp. 1369-1375 ◽  
Author(s):  
Chung-Ping Shao ◽  
Lien-I Hor

ABSTRACT Expression of the Vibrio vulnificus metalloprotease gene, vvp, was turned up rapidly when bacterial growth reached the late log phase. A similar pattern of expression has been found in the metalloprotease gene of Vibrio cholerae, and this has been shown to be regulated by a Vibrio harveyiLuxR-like transcriptional activator. To find out whether a LuxR homologue exists in V. vulnificus, a gene library of this organism was screened by colony hybridization using a probe derived from a sequence that is conserved in various luxR-like genes of vibrios. A gene containing a 618-bp open reading frame was identified and found to be identical to the smcR gene ofV. vulnificus reported previously. An isogenic SmcR-deficient (RD) mutant was further constructed by an in vivo allelic exchange technique. This mutant exhibited an extremely low level of vvp transcription compared with that of the parent strain. On the other hand, the cytolysin gene, vvhA, was expressed at a higher level in the RD mutant than in the parent strain during the log phase of growth. These data suggested that SmcR might not only be a positive regulator of the protease gene but might also be involved in negative regulation of the cytolysin gene. Virulence of the RD mutant in either normal or iron-overloaded mice challenged by intraperitoneal injection was comparable to that of the parent strain, indicating that SmcR is not required for V. vulnificusvirulence in mice.


2002 ◽  
Vol 48 (5) ◽  
pp. 458-462 ◽  
Author(s):  
Chengru Zhu ◽  
Musangu Ngeleka ◽  
Andrew A Potter ◽  
Brenda J Allan

The Fur (ferric uptake regulator) protein is a master regulator of iron metabolism in gram-negative bacteria. In the present study, the effect of a partial deletion of the fur gene on the acid-tolerance response and in vivo virulence of avian Escherichia coli was examined. The fur mutant was unable to trigger the acid-tolerance response as observed in the wild-type parent strain. However, the mutant was as virulent as the wild-type parent strain when tested in 1-day-old chickens by subcutaneous inoculation. These data indicate that the fur gene is involved in the acid-tolerance response but not involved in the virulence of E. coli, as detected by the ability to cause septicemia in our experimental infection.Key words: E. coli, fur, acid-tolerance response.


Parasitology ◽  
1993 ◽  
Vol 106 (1) ◽  
pp. 31-37 ◽  
Author(s):  
J. Tachezy ◽  
J. Kulda ◽  
E. Tomková

SUMMARYAerobic resistance of Trichomonas vaginalis to metronidazole was induced in vitro by anaerobic cultivation of drug-susceptible trichomonads with low concentrations of the drug (2–3 μg/ml) for 50 days. Minimal lethal concentrations (MLC) for metronidazole of the resistant derivatives were high in aerobic susceptibility assays (MLC = 216–261.5 μg/ml) but low in anaerobic assays (MLC = 4.2–6.3 μg/ml), surpassing MLC values of their parent strain approximately 50-fold and 3-fold under aerobiosis and anaerobiosis, respectively. Sensitivity to metronidazole under anaerobic conditions and activity of the hydrogenosomal enzyme pyruvate: ferredoxin oxidoreductase indicated that the resistance was of the aerobic type. Dependence of the resistance manifestation on O2 was further confirmed by susceptibility assays in vitro performed in defined gas mixtures of different oxygen content (1–20%). Five percent concentration of O2 proved to be the threshold required for resistance demonstration and the MLC values further increased with increasing O2 concentrations. The in vitro-induced resistance was also demonstrated in vivo by subcutaneous mouse assay. The dose of metronidazole needed to cure 50% of infected mice (DC50) was 223 mg/kg × 3 for resistant derivative MR-3a but 6.6 mg/kg × 3 only for its drug-susceptible parent strain. The metronidazole – resistant strains developed in this study correspond by their properties to drug-resistant T. vaginalis strains isolated from patients refractory to treatment, and promise to be a useful tool in the study of 5-nitroimidazole aerobic resistance.


Author(s):  
Shin-ichi Hachisuka ◽  
Tarou Nishii ◽  
Shosuke Yoshida

Poly(ethylene terephthalate) (PET) is a commonly used synthetic plastic; however its non-biodegradability results in a large amount of waste accumulation that has a negative impact on the environment. Recently, a PET-degrading bacterium Ideonella sakaiensis 201-F6 strain was isolated and the enzymes involved in PET-digestion, PET hydrolase (PETase) and mono(2-hydroxyethyl) terephthalic acid (MHET) hydrolase (MHETase), were identified. Despite the great potentials of I. sakaiensis in bioremediation and biorecycling, approaches to studying this bacterium remain limited. In this study, to enable the functional analysis of PETase and MHETase genes in vivo , we have developed a gene disruption system in I. sakaiensis . The pT18 mobsacB -based disruption vector harboring directly connected 5'- and 3'-flanking regions of the target gene for homologous recombination was introduced into I. sakaiensis cells via conjugation. First, we deleted the orotidine 5'-phosphate decarboxylase gene ( pyrF ) from the genome of the wild-type strain, producing the Δ pyrF strain with 5-fluoroorotic acid (5-FOA) resistance. Next, using the Δ pyrF strain as a parent strain, and pyrF as a counterselection marker, we disrupted the genes for PETase and MHETase. The growth of both Δ petase and Δ mhetase strains on terephthalic acid (TPA, one of the PET hydrolytic products) was comparable to that of the parent strain. However, these mutant strains dramatically decreased the growth level on PET to that on no carbon source. Moreover, the Δ petase strain completely abolished PET degradation capacity. These results demonstrate that PETase and MHETase are essential for I. sakaiensis metabolism of PET. IMPORTANCE The poly(ethylene terephthalate) (PET)-degrading bacterium Ideonella sakaiensis possesses two unique enzymes able to serve in PET hydrolysis. PET hydrolase (PETase) hydrolyzes PET into mono(2-hydroxyethyl) terephthalic acid (MHET) and MHET hydrolase (MHETase) hydrolyzes MHET into terephthalic acid (TPA) and ethylene glycol (EG). These enzymes have attracted global attention as they have potential to be used for bioconversion of PET. Compared to many in vitro studies including the biochemical and crystal structure analyses, few in vivo studies have been reported. Here, we developed a targeted gene disruption system in I. sakaiensis , which was then applied for constructing Δ petase and Δ mhetase strains. Growth of these disruptants revealed that PETase is a sole enzyme responsible for PET degradation in I. sakaiensis , while PETase and MHETase play essential roles in its PET assimilation.


Sign in / Sign up

Export Citation Format

Share Document