scholarly journals The chromatin-tethering domain of human cytomegalovirus immediate-early (IE) 1 mediates associations of IE1, PML and STAT2 with mitotic chromosomes, but is not essential for viral replication

2012 ◽  
Vol 93 (4) ◽  
pp. 716-721 ◽  
Author(s):  
Hye Jin Shin ◽  
Young-Eui Kim ◽  
Eui Tae Kim ◽  
Jin-Hyun Ahn

Human cytomegalovirus (HCMV) immediate-early (IE) 1 protein associates with chromosomes in mitotic cells using its carboxyl-terminal 16 aa region. However, the role of this IE1 activity in viral growth has not been evaluated in the context of mutant virus infection. We produced a recombinant HCMV encoding mutant IE1 with the carboxyl-terminal chromosome-tethering domain (CTD) deleted. This IE1(ΔCTD) virus grew like the wild-type virus in fibroblasts, indicating that the CTD is not essential for viral replication in permissive cells. Unlike wild-type virus infections, PML and STAT2, which interact with IE1, did not accumulate at mitotic chromosomes in IE1(ΔCTD) virus-infected fibroblasts, demonstrating that their associations with chromosomes are IE1 CTD-dependent. IE1 SUMOylation did not affect IE1 association with chromosomes. Our results provide genetic evidence that the CTD is required for the associations of IE1, PML and STAT2 with mitotic chromosomes, but that these IE1-related activities are not essential for viral replication in fibroblasts.

2006 ◽  
Vol 80 (17) ◽  
pp. 8371-8378 ◽  
Author(s):  
Xuyan Feng ◽  
Jörg Schröer ◽  
Dong Yu ◽  
Thomas Shenk

ABSTRACT We have characterized the function of the human cytomegalovirus US24 gene, a US22 gene family member. Two US24-deficient mutants (BADinUS24 and BADsubUS24) exhibited a 20- to 30-fold growth defect, compared to their wild-type parent (BADwt), after infection at a relatively low (0.01 PFU/cell) or high (1 PFU/cell) input multiplicity. Representative virus-encoded proteins and viral DNA accumulated with normal kinetics to wild-type levels after infection with mutant virus when cells received equal numbers of mutant and wild-type infectious units. Further, the proteins were properly localized and no ultrastructural differences were found by electron microscopy in mutant-virus-infected cells compared to wild-type-virus-infected cells. However, virions produced by US24-deficient mutants had a 10-fold-higher genome-to-PFU ratio than wild-type virus. When infections were performed using equal numbers of input virus particles, the expression of immediate-early, early, and late viral proteins was substantially delayed and decreased in the absence of US24 protein. This delay is not due to inefficient virus entry, since two tegument proteins and viral DNA moved to the nucleus equally well in mutant- and wild-type-virus-infected cells. In summary, US24 is a virion protein and virions produced by US24-deficient viruses exhibit a block to the human cytomegalovirus replication cycle after viral DNA reaches the nucleus and before immediate-early mRNAs are transcribed.


2002 ◽  
Vol 76 (3) ◽  
pp. 1043-1050 ◽  
Author(s):  
Jill T. Bechtel ◽  
Thomas Shenk

ABSTRACT The human cytomegalovirus UL47 open reading frame encodes a 110-kDa protein that is a component of the virion tegument. We have constructed a cytomegalovirus mutant, ADsubUL47, in which the central portion of the UL47 open reading frame has been replaced by two marker genes. The mutant replicated to titers 100-fold lower than those for wild-type virus after infection at either a high or a low input multiplicity in primary human fibroblasts but was substantially complemented on cells expressing UL47 protein. A revertant virus in which the mutation was repaired, ADrevUL47, replicated with wild-type kinetics. Mutant virions lacked UL47 protein and contained reduced amounts of UL48 protein. The mutant was found to be less infectious than wild-type virus, and a defect very early in the replication cycle was observed. Transcription of the viral immediate-early 1 gene was delayed by 8 to 10 h. However, this delay was not the result of a defect in virus entry or of the inability of virion proteins to transactivate the major immediate-early promoter. We also show that the UL47 protein coprecipitated with the UL48 and UL69 tegument proteins and the UL86-encoded major capsid protein. We propose that a UL47-containing complex is involved in the release of viral DNA from the disassembling virus particle and that the loss of UL47 protein causes this process to be delayed.


2002 ◽  
Vol 76 (2) ◽  
pp. 928-932 ◽  
Author(s):  
Julie A. Heider ◽  
Yongjun Yu ◽  
Thomas Shenk ◽  
James C. Alwine

ABSTRACT A human cytomegalovirus mutant (TNsubIE2P) was constructed with alanine substitutions of four residues (T27, S144, T233, and S234) previously shown to be phosphorylated in the immediate-early 2 (IE2) protein. This mutant grew as well as the wild type at both low and high multiplicities of infection. The mutant activated the major immediate-early, UL4, and UL44 promoters to similar levels, and with similar kinetics, as wild-type virus. However, the TNsubIE2P mutant virus transactivated an endogenous simian virus 40 early promoter 4 h earlier and to higher levels than the wild-type virus in infected human fibroblasts. The modification of the IE2 protein by SUMO-1 (i.e., its sumoylated state) was also examined.


2016 ◽  
Vol 90 (6) ◽  
pp. 3229-3242 ◽  
Author(s):  
Young-Eui Kim ◽  
Se Eun Oh ◽  
Ki Mun Kwon ◽  
Chan Hee Lee ◽  
Jin-Hyun Ahn

ABSTRACTHuman cytomegalovirus (HCMV) protein pUL48 is closely associated with the capsid and has a deubiquitinating protease (DUB) activity in its N-terminal region. Although this DUB activity moderately increases virus replication in cultured fibroblast cells, the requirements of the N-terminal region of pUL48 in the viral replication cycle are not fully understood. In this study, we characterized the recombinant viruses encoding UL48(ΔDUB/NLS), which lacks the DUB domain and the adjacent nuclear localization signal (NLS), UL48(ΔDUB), which lacks only the DUB, and UL48(Δ360–1200), which lacks the internal region (amino acids 360 to 1200) downstream of the DUB/NLS. While ΔDUB/NLS and Δ360–1200 mutant viruses did not grow in fibroblasts, the ΔDUB virus replicated to titers 100-fold lower than those for wild-type virus and showed substantially reduced viral gene expression at low multiplicities of infection. The DUB domain contained ubiquitination sites, and DUB activity reduced its own proteasomal degradation intrans. Deletion of the DUB domain did not affect the nuclear and cytoplasmic localization of pUL48, whereas the internal region (360–1200) was necessary for cytoplasmic distribution. In coimmunoprecipitation assays, pUL48 interacted with three tegument proteins (pUL47, pUL45, and pUL88) and two capsid proteins (pUL77 and pUL85) but the DUB domain contributed to only pUL85 binding. Furthermore, we found that the ΔDUB virus showed reduced virion stability and less efficiently delivered its genome into the cell than the wild-type virus. Collectively, our results demonstrate that the N-terminal DUB domain of pUL48 contributes to efficient viral growth by regulating its own stability and promoting virion stabilization and virus entry.IMPORTANCEHCMV pUL48 and its herpesvirus homologs play key roles in virus entry, regulation of immune signaling pathways, and virion assembly. The N terminus of pUL48 contains the DUB domain, which is well conserved among all herpesviruses. Although studies using the active-site mutant viruses revealed that the DUB activity promotes viral growth, the exact role of this region in the viral life cycle is not fully understood. In this study, using the mutant virus lacking the entire DUB domain, we demonstrate that the DUB domain of pUL48 contributes to viral growth by regulating its own stability via autodeubiquitination and promoting virion stability and virus entry. This report is the first to demonstrate the characteristics of the mutant virus with the entire DUB domain deleted, which, along with information on the functions of this region, is useful in dissecting the functions associated with pUL48.


2007 ◽  
Vol 82 (2) ◽  
pp. 849-858 ◽  
Author(s):  
Hiroki Isomura ◽  
Mark F. Stinski ◽  
Ayumi Kudoh ◽  
Sanae Nakayama ◽  
Takayuki Murata ◽  
...  

ABSTRACT The promoter of the major immediate-early (MIE) genes of human cytomegalovirus (HCMV), also referred to as the CMV promoter, possesses a cis-acting element positioned downstream of the TATA box between positions −14 and −1 relative to the transcription start site (+1). We determined the role of the cis-acting element in viral replication by comparing recombinant viruses with the cis-acting element replaced with other sequences. Recombinant virus with the simian CMV counterpart replicated efficiently in human foreskin fibroblasts, as well as wild-type virus. In contrast, replacement with the murine CMV counterpart caused inefficient MIE gene transcription, RNA splicing, MIE and early viral gene expression, and viral DNA replication. To determine which nucleotides in the cis-acting element are required for efficient MIE gene transcription and splicing, we constructed mutations within the cis-acting element in the context of a recombinant virus. While mutations in the cis-acting element have only a minor effect on in vitro transcription, the effects on viral replication are major. The nucleotides at −10 and −9 in the cis-acting element relative to the transcription start site (+1) affect efficient MIE gene transcription and splicing at early times after infection. The cis-acting element also acts as a cis-repression sequence when the viral IE86 protein accumulates in the infected cell. We demonstrate that the cis-acting element has an essential role in viral replication.


2000 ◽  
Vol 74 (16) ◽  
pp. 7411-7421 ◽  
Author(s):  
Xiaoyan Zhan ◽  
Manfred Lee ◽  
Jianqiao Xiao ◽  
Fenyong Liu

ABSTRACT A transposon derived from Escherichia coliTn3 was introduced into the genome of murine cytomegalovirus (MCMV) to generate a pool of viral mutants, including two recombinant viruses that contained the transposon sequence within open reading frames m09 and M83. Our studies provide the first direct evidence to suggest that m09 is not essential for viral replication in mouse NIH 3T3 cells. Studies in cultured cells and in both BALB/c-Byj and CB17 severe combined immunodeficient (SCID) mice indicated that the transposon insertion is stable during viral propagation both in vitro and in vivo. Moreover, the virus that contained the insertion mutation in m09 exhibited a titer similar to that of the wild-type virus in the salivary glands, lungs, livers, spleens, and kidneys of both the BALB/c and SCID mice and was as virulent as the wild-type virus in killing the SCID mice when these animals were intraperitoneally infected with these viruses. These results suggest that m09 is dispensable for viral growth in these organs and that the presence of the transposon sequence in the viral genome does not significantly affect viral replication in vivo. In contrast, the virus that contained the insertion mutation in M83 exhibited a titer of at least 60-fold lower than that of the wild-type virus in the organs of the SCID mice and was attenuated in killing the SCID mice. These results demonstrate the utility of using the Tn3-based system as a mutagenesis approach for studying the function of MCMV genes in both immunocompetent and immunodeficient animals.


1999 ◽  
Vol 12 (2) ◽  
pp. 153-162 ◽  
Author(s):  
Marise Borja ◽  
Teresa Rubio ◽  
Herman B. Scholthof ◽  
Andrew O. Jackson

Nicotiana benthamiana plants transformed with the coat protein gene of tomato bushy stunt virus (TBSV) failed to elicit effective virus resistance when inoculated with wild-type virus. Subsequently, R1 and R2 progeny from 13 transgenic lines were inoculated with a TBSV mutant containing a defective coat protein gene. Mild symptoms typical of those elicited in nontransformed plants infected with the TBSV mutant initially appeared. However, within 2 to 4 weeks, up to 20% of the transgenic plants sporadically began to develop the lethal syndrome characteristic of wild-type virus infections. RNA hybridization and immunoblot analyses of these plants and nontransformed N. benthamiana inoculated with virus from the transgenic lines indicated that wild-type virus had been regenerated by a double recombination event between the defective virus and the coat protein transgene. Similar results were obtained with a TBSV deletion mutant containing a nucleotide sequence marker, and with a chimeric cucumber necrosis virus (CNV) containing the defective TBSV coat protein gene. In both cases, purified virions contained wild-type TBSV RNA or CNV chimeric RNA derived by recombination with the transgenic coat protein mRNA. These results thus demonstrate that recombinant tombusviruses can arise frequently from viral genes expressed in transgenic plants.


Author(s):  
Juan Tiraboschi ◽  
Sofia Scévola ◽  
Sujan Dilly Penchala ◽  
Elisabeth Challenger ◽  
Laura Else ◽  
...  

Abstract We determined total and unbound concentrations of Doravirine (DOR) in cerebrospinal fluid (CSF) and blood plasma. Total and unbound DOR concentrations in CSF exceeded the EC50 value against wild-type virus (5.1 ng/mL) in all subjects suggesting that DOR may contribute to inhibit viral replication in this compartment.


2009 ◽  
Vol 83 (23) ◽  
pp. 12046-12056 ◽  
Author(s):  
Eui Tae Kim ◽  
Se Eun Oh ◽  
Yun-Ok Lee ◽  
Wade Gibson ◽  
Jin-Hyun Ahn

ABSTRACT The human cytomegalovirus (HCMV) open reading frame UL48 encodes a 253-kDa tegument protein that is closely associated with the capsid and was recently shown to have ubiquitin-specific protease activity (J. Wang, A. N. Loveland, L. M. Kattenhorn, H. L. Ploegh, and W. Gibson, J. Virol. 80:6003-6012, 2006). Here, we examined the cleavage specificity of this deubiquitinase (DUB) and replication characteristics of an active-site mutant virus. The purified catalytic domain of the UL48 DUB (1 to 359 amino acids), corresponding to the herpes simplex virus UL36USP DUB (L. M. Kattenhorn, G. A. Korbel, B. M. Kessler, E. Spooner, and H. L. Ploegh, Mol. Cell 19:547-557, 2005), efficiently released ubiquitin but not ubiquitin-like modifications from a hemagglutinin peptide substrate. Mutating the active-site residues Cys24 or His162 (C24S and H162A, respectively) abolished this activity. The HCMV UL48 and HSV UL36USP DUBs cleaved both Lys48- and Lys63-linked ubiquitin dimers and oligomers, showing more activity toward Lys63 linkages. The DUB activity of the full-length UL48 protein immunoprecipitated from virus-infected cells also showed a better cleavage of Lys63-linked ubiquitinated substrates. An HCMV (Towne) mutant virus in which the UL48 DUB activity was destroyed [UL48(C24S)] produced 10-fold less progeny virus and reduced amounts of viral proteins compared to wild-type virus at a low multiplicity of infection. The mutant virus also produced perceptibly less overall deubiquitination than the wild-type virus. Our findings demonstrate that the HCMV UL48 DUB contains both a ubiquitin-specific carboxy-terminal hydrolase activity and an isopeptidase activity that favors ubiquitin Lys63 linkages and that these activities can influence virus replication in cultured cells.


2005 ◽  
Vol 79 (20) ◽  
pp. 12961-12968 ◽  
Author(s):  
Amy N. Loveland ◽  
Chee-Kai Chan ◽  
Edward J. Brignole ◽  
Wade Gibson

ABSTRACT The cytomegalovirus (CMV) maturational protease, assemblin, contains an “internal” (I) cleavage site absent from its homologs in other herpesviruses. Blocking this site for cleavage did not prevent replication of the resulting I− mutant virus. However, cells infected with the I− virus showed increased amounts of a fragment produced by cleavage at the nearby “cryptic” (C) site, suggesting that its replication may bypass the I-site block by using the C site as an alternate cleavage pathway. To test this and further examine the biological importance of these cleavages, we constructed two additional virus mutants—one blocked for C-site cleavage and another blocked for both I- and C-site cleavage. Infectivity comparisons with the parental wild-type virus showed that the I− mutant was the least affected for virus production, whereas infectivity of the C− mutant was reduced by ≈40% and when both sites were blocked virus infectivity was reduced by nearly 90%, providing the first evidence that these cleavages have biological significance. We also present and discuss evidence suggesting that I-site cleavage destabilizes assemblin and its fragments, whereas C-site cleavage does not.


Sign in / Sign up

Export Citation Format

Share Document