chromosome tethering
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 1)

mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Nikolai P. Radzinski ◽  
Marina Besprozvannaya ◽  
Eric L. McLean ◽  
Anusha Talwalkar ◽  
Briana M. Burton

ABSTRACTChromosome segregation in sporulatingBacillus subtilisinvolves the tethering of sister chromosomes at opposite cell poles. RacA is known to mediate chromosome tethering by interacting with both centromere-like elements in the DNA and with DivIVA, a membrane protein which localizes to the cell poles. RacA has a secondary function in which it assists in nucleoid condensation. Here we demonstrate that, in addition to positioning and condensing the chromosome, RacA contributes to efficient transport of DNA by the chromosome segregation motor SpoIIIE. When RacA is deleted, one-quarter of cells fail to capture DNA in the nascent spore, yet 70% of cells fail to form viable spores without RacA. This discrepancy indicates that RacA possesses a role in sporulation beyond DNA capture and condensation. We observed that the mutant cells had reduced chromosome translocation into the forespore across the entire length of the chromosome, requiring nearly twice as much time to move a given DNA locus. Additionally, functional abolition of the RacA-DivIVA interaction reduced translocation to a similar degree as in aracAdeletion strain, demonstrating the importance of the RacA-mediated tether in translocation and chromosome packaging during sporulation. We propose that the DNA-membrane anchor facilitates efficient translocation by SpoIIIE, not through direct protein-protein contacts but by virtue of physical effects on the chromosome that arise from anchoring DNA at a distance.IMPORTANCETo properly segregate their chromosomes, organisms tightly regulate the organization and dynamics of their DNA. Aspects of the process by which DNA is translocated during sporulation are not yet fully understood, such as what factors indirectly influence the activity of the motor protein SpoIIIE. In this work, we have shown that a DNA-membrane tether mediated by RacA contributes to the activity of SpoIIIE. Loss of RacA nearly doubles the time of translocation, despite the physically distinct locations these proteins and their activities occupy within the cell. This is a rare example of an explicit effect that DNA-membrane connections can have on cell physiology and demonstrates that distant changes to the state of the chromosome can influence motor proteins which act upon it.


2019 ◽  
Vol 39 (8) ◽  
Author(s):  
Omar Hamdani ◽  
Namrita Dhillon ◽  
Tsung-Han S. Hsieh ◽  
Takahiro Fujita ◽  
Josefina Ocampo ◽  
...  

ABSTRACT The genome is packaged and organized in an ordered, nonrandom manner, and specific chromatin segments contact nuclear substructures to mediate this organization. tRNA genes (tDNAs) are binding sites for transcription factors and architectural proteins and are thought to play an important role in the organization of the genome. In this study, we investigate the roles of tDNAs in genomic organization and chromosome function by editing a chromosome so that it lacked any tDNAs. Surprisingly our analyses of this tDNA-less chromosome show that loss of tDNAs does not grossly affect chromatin architecture or chromosome tethering and mobility. However, loss of tDNAs affects local nucleosome positioning and the binding of SMC proteins at these loci. The absence of tDNAs also leads to changes in centromere clustering and a reduction in the frequency of long-range HML-HMR heterochromatin clustering with concomitant effects on gene silencing. We propose that the tDNAs primarily affect local chromatin structure, which results in effects on long-range chromosome architecture.


2018 ◽  
Author(s):  
Omar Hamdani ◽  
Namrita Dhillon ◽  
Tsung-Han S. Hsieh ◽  
Takahiro Fujita ◽  
Josefina Ocampo ◽  
...  

AbstractThe genome is packaged and organized in an ordered, non-random manner and specific chromatin segments contact nuclear substructures to mediate this organization. While transfer RNA genes (tDNAs) are essential for the generation of tRNAs, these loci are also binding sites for transcription factors and architectural proteins and are thought to play an important role in the organization of the genome. In this study, we investigate the role of tDNAs in genomic organization and chromosome function by editing a chromosome so that it lacks any tDNAs. Surprisingly our analyses of this tDNA-less chromosome show that loss of tDNAs does not grossly affect chromosome folding or chromosome tethering. However, loss of tDNAs affects local nucleosome positioning and the binding of SMC proteins at these loci. The absence of tDNAs also leads to changes in centromere clustering and a reduction in the frequency of long range HML-HMR heterochromatin clustering. We propose that the tDNAs primarily affect local chromatin structure that result in effects on long-range chromosome architecture.


PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e102474 ◽  
Author(s):  
Barış Avşaroğlu ◽  
Gabriel Bronk ◽  
Susannah Gordon-Messer ◽  
Jungoh Ham ◽  
Debra A. Bressan ◽  
...  

2012 ◽  
Vol 93 (4) ◽  
pp. 716-721 ◽  
Author(s):  
Hye Jin Shin ◽  
Young-Eui Kim ◽  
Eui Tae Kim ◽  
Jin-Hyun Ahn

Human cytomegalovirus (HCMV) immediate-early (IE) 1 protein associates with chromosomes in mitotic cells using its carboxyl-terminal 16 aa region. However, the role of this IE1 activity in viral growth has not been evaluated in the context of mutant virus infection. We produced a recombinant HCMV encoding mutant IE1 with the carboxyl-terminal chromosome-tethering domain (CTD) deleted. This IE1(ΔCTD) virus grew like the wild-type virus in fibroblasts, indicating that the CTD is not essential for viral replication in permissive cells. Unlike wild-type virus infections, PML and STAT2, which interact with IE1, did not accumulate at mitotic chromosomes in IE1(ΔCTD) virus-infected fibroblasts, demonstrating that their associations with chromosomes are IE1 CTD-dependent. IE1 SUMOylation did not affect IE1 association with chromosomes. Our results provide genetic evidence that the CTD is required for the associations of IE1, PML and STAT2 with mitotic chromosomes, but that these IE1-related activities are not essential for viral replication in fibroblasts.


2009 ◽  
Vol 20 (12) ◽  
pp. 2932-2942 ◽  
Author(s):  
Alan Michael Tartakoff ◽  
Purnima Jaiswal

When haploid cells of Saccharomyces cerevisiae are crossed, parental nuclei congress and fuse with each other. To investigate underlying mechanisms, we have developed assays that evaluate the impact of drugs and mutations. Nuclear congression is inhibited by drugs that perturb the actin and tubulin cytoskeletons. Nuclear envelope (NE) fusion consists of at least five steps in which preliminary modifications are followed by controlled flux of first outer and then inner membrane proteins, all before visible dilation of the waist of the nucleus or coalescence of the parental spindle pole bodies. Flux of nuclear pore complexes occurs after dilation. Karyogamy requires both the Sec18p/NSF ATPase and ER/NE luminal homeostasis. After fusion, chromosome tethering keeps tagged parental genomes separate from each other. The process of NE fusion and evidence of genome independence in yeast provide a prototype for understanding related events in higher eukaryotes.


Nature ◽  
2008 ◽  
Vol 456 (7222) ◽  
pp. 667-670 ◽  
Author(s):  
Karim Mekhail ◽  
Jan Seebacher ◽  
Steven P. Gygi ◽  
Danesh Moazed

2005 ◽  
Vol 280 (27) ◽  
pp. 25517-25523 ◽  
Author(s):  
Stéphane Emiliani ◽  
Aurélie Mousnier ◽  
Katrien Busschots ◽  
Marlène Maroun ◽  
Bénédicte Van Maele ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document