scholarly journals Tomato RNA polymerase II interacts with the rod-like conformation of the left terminal domain of the potato spindle tuber viroid positive RNA genome

2012 ◽  
Vol 93 (7) ◽  
pp. 1591-1600 ◽  
Author(s):  
Teodora Bojić ◽  
Yasnee Beeharry ◽  
Da Jiang Zhang ◽  
Martin Pelchat

Potato spindle tuber viroid (PSTVd) is a small, single-stranded, circular, non-coding RNA pathogen. Host DNA-dependent RNA polymerase II (RNAP II) was proposed to be critical for its replication, but no interaction site for RNAP II on the PSTVd RNA genome was identified. Using a co-immunoprecipitation strategy involving a mAb specific for the conserved heptapeptide (i.e. YSPTSPS) located at the carboxy-terminal domain of the largest subunit of RNAP II, we established the interaction of tomato RNAP II with PSTVd RNA and showed that RNAP II associates with the left terminal domain of PSTVd (+) RNA. RNAP II did not interact with any of several PSTVd (−) RNAs tested. Deletion and site-directed mutagenesis of a shortened model PSTVd (+) RNA fragment were used to identify the role of specific nucleotides and structural motifs in this interaction. Our results provide evidence for the interaction of a RNAP II complex from a natural host with the rod-like conformation of the left terminal domain of PSTVd (+) RNA.

2021 ◽  
Author(s):  
Blase Matthew LeBlanc ◽  
Rosamaria Yvette Moreno ◽  
Edwin Escobar ◽  
Mukesh Kumar Venkat Ramani ◽  
Jennifer S Brodbelt ◽  
...  

RNA polymerase II (RNAP II) is one of the primary enzymes responsible for expressing protein-encoding genes and some small nuclear RNAs. The enigmatic carboxy-terminal domain (CTD) of RNAP II and...


1998 ◽  
Vol 18 (7) ◽  
pp. 4291-4300 ◽  
Author(s):  
Michael C. Edwards ◽  
Calvin Wong ◽  
Stephen J. Elledge

ABSTRACT The gene coding for human cyclin K was isolated as aCPR (cell-cycle progression restoration) gene by virtue of its ability to impart a Far− phenotype to the budding yeast Saccharomyces cerevisiae and to rescue the lethality of a deletion of the G1 cyclin genes CLN1,CLN2, and CLN3. The cyclin K gene encodes a 357-amino-acid protein most closely related to human cyclins C and H, which have been proposed to play a role in regulating basal transcription through their association with and activation of cyclin-dependent kinases (Cdks) that phosphorylate the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase II (RNAP II). Murine and Drosophila melanogaster homologs of cyclin K have also been identified. Cyclin K mRNA is ubiquitously expressed in adult mouse and human tissues, but is most abundant in the developing germ cells of the adult testis and ovaries. Cyclin K is associated with potent CTD kinase and Cdk kinase (CAK) activity in vitro and coimmunoprecipitates with the large subunit of RNAP II. Thus, cyclin K represents a new member of the “transcription” cyclin family which may play a dual role in regulating Cdk and RNAP II activity.


1998 ◽  
Vol 63 (0) ◽  
pp. 301-310 ◽  
Author(s):  
S. MCCRACKEN ◽  
E. ROSONINA ◽  
N. FONG ◽  
M. SIKES ◽  
A. BEYER ◽  
...  

2001 ◽  
Vol 21 (19) ◽  
pp. 6359-6368 ◽  
Author(s):  
Benoı̂t Palancade ◽  
Marie Françoise Dubois ◽  
Michael E. Dahmus ◽  
Olivier Bensaude

ABSTRACT The phosphorylation of the RNA polymerase II (RNAP II) carboxy-terminal domain (CTD) plays a key role in mRNA metabolism. The relative ratio of hyperphosphorylated RNAP II to hypophosphorylated RNAP II is determined by a dynamic equilibrium between CTD kinases and CTD phosphatase(s). The CTD is heavily phosphorylated in meioticXenopus laevis oocytes. In this report we show that the CTD undergoes fast and massive dephosphorylation upon fertilization. A cDNA was cloned and shown to code for a full-length xFCP1, theXenopus orthologue of the FCP1 CTD phosphatases in humans and Saccharomyces cerevisiae. Two critical residues in the catalytic site were identified. CTD phosphatase activity was observed in extracts prepared from Xenopuseggs and cells and was shown to be entirely attributable to xFCP1. The CTD dephosphorylation triggered by fertilization was reproduced upon calcium activation of cytostatic factor-arrested egg extracts. Using immunodepleted extracts, we showed that this dephosphorylation is due to xFCP1. Although transcription does not occur at this stage, phosphorylation appears as a highly dynamic process involving the antagonist action of Xp42 mitogen-activated protein kinase and FCP1 phosphatase. This is the first report that free RNAP II is a substrate for FCP1 in vivo, independent from a transcription cycle.


RSC Advances ◽  
2015 ◽  
Vol 5 (98) ◽  
pp. 80434-80440 ◽  
Author(s):  
Saihui Zhang ◽  
Yantao Shi ◽  
Wei Wang ◽  
Zhi Yuan

Association between zinc(ii)-dipicolylamine appended beta-cyclodextrin and CTD (carboxy-terminal domain of RNA polymerase II) peptides with different phosphorylation patterns was studied by ITC and NMR.


1999 ◽  
Vol 77 (4) ◽  
pp. 367-374 ◽  
Author(s):  
Sébastien B Lavoie ◽  
Alexandra L Albert ◽  
Alain Thibodeau ◽  
Michel Vincent

The phosphorylation of the carboxy-terminal domain of the largest subunit of RNA polymerase II plays an important role in the regulation of transcriptional activity and is also implicated in pre-mRNA processing. Different stresses, such as a heat shock, induce a marked alteration in the phosphorylation of this domain. The expression of stress genes by RNA polymerase II, to the detriment of other genes, could be attributable to such modifications of the phosphorylation sites. Using two phosphodependent antibodies recognizing distinct hyperphosphorylated forms of RNA polymerase II largest subunit, we studied the phosphorylation state of the subunit in different species after heat shocks of varying intensities. One of these antibodies, CC-3, preferentially recognizes the carboxy-terminal domain of the largest subunit under normal conditions, but its reactivity is diminished during stress. In contrast, the other antibody used, MPM-2, demonstrated a strong reactivity after a heat shock in most species studied. Therefore, CC-3 and MPM-2 antibodies discriminate between phosphoisomers that may be functionally different. Our results further indicate that the pattern of phosphorylation of RNA polymerase II in most species varies in response to environmental stress.Key words: RNA polymerase II, heat shock, phosphorylation, CC-3, MPM-2.


Sign in / Sign up

Export Citation Format

Share Document