Heat shock-induced alterations in phosphorylation of the largest subunit of RNA polymerase II as revealed by monoclonal antibodies CC-3 and MPM-2

1999 ◽  
Vol 77 (4) ◽  
pp. 367-374 ◽  
Author(s):  
Sébastien B Lavoie ◽  
Alexandra L Albert ◽  
Alain Thibodeau ◽  
Michel Vincent

The phosphorylation of the carboxy-terminal domain of the largest subunit of RNA polymerase II plays an important role in the regulation of transcriptional activity and is also implicated in pre-mRNA processing. Different stresses, such as a heat shock, induce a marked alteration in the phosphorylation of this domain. The expression of stress genes by RNA polymerase II, to the detriment of other genes, could be attributable to such modifications of the phosphorylation sites. Using two phosphodependent antibodies recognizing distinct hyperphosphorylated forms of RNA polymerase II largest subunit, we studied the phosphorylation state of the subunit in different species after heat shocks of varying intensities. One of these antibodies, CC-3, preferentially recognizes the carboxy-terminal domain of the largest subunit under normal conditions, but its reactivity is diminished during stress. In contrast, the other antibody used, MPM-2, demonstrated a strong reactivity after a heat shock in most species studied. Therefore, CC-3 and MPM-2 antibodies discriminate between phosphoisomers that may be functionally different. Our results further indicate that the pattern of phosphorylation of RNA polymerase II in most species varies in response to environmental stress.Key words: RNA polymerase II, heat shock, phosphorylation, CC-3, MPM-2.

2021 ◽  
Author(s):  
Blase Matthew LeBlanc ◽  
Rosamaria Yvette Moreno ◽  
Edwin Escobar ◽  
Mukesh Kumar Venkat Ramani ◽  
Jennifer S Brodbelt ◽  
...  

RNA polymerase II (RNAP II) is one of the primary enzymes responsible for expressing protein-encoding genes and some small nuclear RNAs. The enigmatic carboxy-terminal domain (CTD) of RNAP II and...


RSC Advances ◽  
2015 ◽  
Vol 5 (98) ◽  
pp. 80434-80440 ◽  
Author(s):  
Saihui Zhang ◽  
Yantao Shi ◽  
Wei Wang ◽  
Zhi Yuan

Association between zinc(ii)-dipicolylamine appended beta-cyclodextrin and CTD (carboxy-terminal domain of RNA polymerase II) peptides with different phosphorylation patterns was studied by ITC and NMR.


1997 ◽  
Vol 25 (4) ◽  
pp. 694-700 ◽  
Author(s):  
M.-F. Dubois ◽  
M. Vincent ◽  
M. Vigneron ◽  
J. Adamczewski ◽  
J.-M. Egly ◽  
...  

2018 ◽  
Vol 25 (9) ◽  
pp. 833-840 ◽  
Author(s):  
Marc Boehning ◽  
Claire Dugast-Darzacq ◽  
Marija Rankovic ◽  
Anders S. Hansen ◽  
Taekyung Yu ◽  
...  

2004 ◽  
Vol 24 (20) ◽  
pp. 8963-8969 ◽  
Author(s):  
Gregory Bird ◽  
Diego A. R. Zorio ◽  
David L. Bentley

ABSTRACT We investigated the role of RNA polymerase II (pol II) carboxy-terminal domain (CTD) phosphorylation in pre-mRNA processing coupled and uncoupled from transcription in Xenopus oocytes. Inhibition of CTD phosphorylation by the kinase inhibitors 5,6-dichloro-1β-d-ribofuranosyl-benzimidazole and H8 blocked transcription-coupled splicing and poly(A) site cleavage. These experiments suggest that pol II CTD phosphorylation is required for efficient pre-mRNA splicing and 3′-end formation in vivo. In contrast, processing of injected pre-mRNA was unaffected by either kinase inhibitors or α-amanitin-induced depletion of pol II. pol II therefore does not appear to participate directly in posttranscriptional processing, at least in frog oocytes. Together these experiments show that the influence of the phosphorylated CTD on pre-mRNA splicing and 3′-end processing is mediated by transcriptional coupling.


Sign in / Sign up

Export Citation Format

Share Document