scholarly journals Herpes simplex virus type 1 ICP0 induces CD83 degradation in mature dendritic cells independent of its E3 ubiquitin ligase function

2014 ◽  
Vol 95 (6) ◽  
pp. 1366-1375 ◽  
Author(s):  
Christiane S. Heilingloh ◽  
Petra Mühl-Zürbes ◽  
Alexander Steinkasserer ◽  
Mirko Kummer

Mature dendritic cells (mDCs) are the most potent antigen-presenting cells known today, as they are the only antigen-presenting cells able to induce naïve T-cells. Therefore, they play a crucial role during the induction of effective antiviral immune responses. Interestingly, the surface molecule CD83 expressed on mDCs is targeted by several viruses. As CD83 has been shown to exert co-stimulatory functions on mDCs, its downmodulation represents a viral immune escape mechanism. Mechanistically, it has been shown that herpes simplex virus type 1 infection leads to proteasomal degradation of CD83, resulting in a strongly diminished T-cell stimulatory capacity of the infected mDC. Previous data suggest that the viral immediate-early protein ICP0 (infected-cell protein 0) plays an important role in this process. In the present study, we showed that ICP0 is sufficient to induce CD83 degradation in the absence of any other viral factor. However, the mechanism of ICP0-mediated CD83 degradation is not yet understood. Here, we provide evidence that ubiquitination of lysine residues is, despite the published E3 ubiquitin ligase activity of ICP0, not necessary for CD83 degradation. This finding was underlined by the observation that expression of an ICP0 mutant lacking the E3 ubiquitin ligase domain in mDCs still induced CD83 degradation. Finally, inhibition of E1 activating enzyme using the specific inhibitor 4[4-(5-nitro-furan-2-ylmethylene)-3.5-dioxo-pyrazolidin-1-yl]-benzoic acid ethyl ester did not prevent CD83 degradation. Taken together, our data provide strong evidence that ICP0 alone induces CD83 degradation independent of its E3 ubiquitin ligase function and of the ubiquitin machinery.

2001 ◽  
Vol 75 (11) ◽  
pp. 5357-5362 ◽  
Author(s):  
Jane Parkinson ◽  
Roger D. Everett

ABSTRACT Herpes simplex virus type 1 immediate early protein ICP0 influences virus infection by inducing the degradation of specific cellular proteins via a mechanism requiring its RING finger and the ubiquitin-proteasome pathway. Many RING finger proteins, by virtue of their RING finger domain, interact with E2 ubiquitin-conjugating enzymes and act as a component of an E3 ubiquitin ligase. We have recently shown that ICP0 induces the accumulation of colocalizing, conjugated ubiquitin, suggesting that ICP0 can act as or contribute to an E3 ubiquitin ligase. In this report we demonstrate that the ICP0-related RING finger proteins encoded by other alphaherpesviruses also induce colocalizing, conjugated ubiquitin, thereby suggesting that they act by similar biochemical mechanisms.


Immunology ◽  
2014 ◽  
Vol 143 (4) ◽  
pp. 588-600 ◽  
Author(s):  
Karin Vogel ◽  
Sabrina Thomann ◽  
Benjamin Vogel ◽  
Philipp Schuster ◽  
Barbara Schmidt

2009 ◽  
Vol 84 (2) ◽  
pp. 1034-1046 ◽  
Author(s):  
Angela Kather ◽  
Martin J. Raftery ◽  
Gayathri Devi-Rao ◽  
Juliane Lippmann ◽  
Thomas Giese ◽  
...  

ABSTRACT Herpes simplex virus type 1 (HSV-1) is one of the most frequent and successful human pathogens. It targets immature dendritic cells (iDCs) to interfere with the antiviral immune response. The mechanisms underlying apoptosis of HSV-1-infected iDCs are not fully understood. Previously, we have shown that HSV-1-induced apoptosis of iDCs is associated with downregulation of the cellular FLICE-inhibitory protein (c-FLIP), a potent inhibitor of caspase-8-mediated apoptosis. In this study, we prove that HSV-1 induces degradation of c-FLIP in a proteasome-independent manner. In addition, by using c-FLIP-specific small interfering RNA (siRNA) we show for the first time that downregulation of c-FLIP expression is sufficient to drive uninfected iDCs into apoptosis, underlining the importance of this molecule for iDC survival. Surprisingly, we also observed virus-induced c-FLIP downregulation in epithelial cells and many other cell types that do not undergo apoptosis after HSV-1 infection. Microarray analyses revealed that HSV-1-encoded latency-associated transcript (LAT) sequences, which can substitute for c-FLIP as an inhibitor of caspase-8-mediated apoptosis, are much less abundant in iDCs as compared to epithelial cells. Finally, iDCs infected with an HSV-1 LAT knockout mutant showed increased apoptosis when compared to iDCs infected with the corresponding wild-type HSV-1. Taken together, our results demonstrate that apoptosis of HSV-1-infected iDCs requires both c-FLIP downregulation and diminished expression of viral LAT.


Author(s):  
Alexandra Düthorn ◽  
Aykut Turan ◽  
Christina Draßner ◽  
Petra Mühl-Zürbes ◽  
Christiane S Heilingloh ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Alexandros A. Theodoridis ◽  
Christina Eich ◽  
Carl G. Figdor ◽  
Alexander Steinkasserer

Abstract Immune responses require spatial and temporal coordinated interactions between different cell types within distinct microenvironments. This dynamic interplay depends on the competency of the involved cells, predominantly leukocytes, to actively migrate to defined sites of cellular encounters in various tissues. Because of their unique capacity to transport antigen from the periphery to secondary lymphoid tissues for the activation of naive T cells, dendritic cells (DCs) play a key role in the initiation and orchestration of adaptive immune responses. Therefore, pathogen-mediated interference with this process is a very effective way of immune evasion. CYTIP (cytohesin-interacting protein) is a key regulator of DC motility. It has previously been described to control LFA-1 deactivation and to regulate DC adherence. CYTIP expression is up-regulated during DC maturation, enabling their transition from the sessile to the motile state. Here, we demonstrate that on infection of human monocyte-derived DCs with herpes simplex virus type 1 (HSV-1), CYTIP is rapidly degraded and as a consequence β-2 integrins, predominantly LFA-1, are activated. Furthermore, we show that the impairment of migration in HSV-1-infected DCs is in part the result of this increased integrin-mediated adhesion. Thus, we propose a new mechanism of pathogen-interference with central aspects of leukocyte biology.


Sign in / Sign up

Export Citation Format

Share Document