scholarly journals Effects of Brash Removal After Clear Felling on Soil and Soil-Solution Chemistry and Field-Layer Biomass in an Experimental Nitrogen Gradient

2001 ◽  
Vol 1 ◽  
pp. 457-466 ◽  
Author(s):  
E. Ring ◽  
L. Hogbom ◽  
H.A. Nohrstedt

Biofuels, such as brash from forest fellings, have been proposed as an alternative energy source. Brash removal may affect the sustainability of forest production, e.g., through a change in the availability of cations and N in the soil. We report initial effects of brash removal on inorganic N content in humus and mineral soil, soil-solution chemistry, and field-layer biomass after clear felling an N-fertilisation experiment in central Sweden. The experiment comprised six different fertiliser levels, ranging from 0 to 600 kg N ha�1. Urea was given every 5th year during 1967 to 1982 to replicated plots, giving total doses of 0 to 2400 kg N ha�1. Clear felling took place in 1995, 13 years after the last fertilisation. The removal of brash decreased the NO3� content in the humus layer after clear felling. A decrease in the NO3� concentration of the soil solution was indicated during most of the study period as well. No effect of the previous N fertilisation was found in the humus layer, but in the mineral soil there was an increase in NO3� content for the highest N dose after clear felling (p = 0.06). The soil-solution chemistry and the field-layer biomass showed an irregular pattern with no consistent effects of brash removal or previous fertilisation.

1995 ◽  
Vol 84 (1-2) ◽  
pp. 129-145 ◽  
Author(s):  
Ivan J. Fernandez ◽  
Gregory B. Lawrence ◽  
Yowhan Son

2019 ◽  
Vol 34 ◽  
pp. 41-66 ◽  
Author(s):  
Raffaella Balestrini ◽  
Carlo Andrea Delconte ◽  
Andrea Buffagni ◽  
Alessio Fumagalli ◽  
Michele Freppaz ◽  
...  

A number of studies have reported decreasing trends of acidifying and N deposition inputs to forest areas throughout Europe and the USA in recent decades. There is a need to assess the responses of the ecosystem to declining atmospheric pollution by monitoring the variations of chemical species in the various compartments of the forest ecosystem on a long temporal scale. In this study, we report on patterns and trends in throughfall deposition concentrations of inorganic N, dissolved organic N (DON) and C (DOC) over a 20-year (1995–2015) period in the LTER site -Val Masino (1190 m a.s.l.), a spruce forest, in the Central Italian Alps. The same chemical species were studied in the litter floor leachates and mineral soil solution, at three different depths (15, 40 and 70 cm), over a 10-year period (2005–2015). Inorganic N concentration was drastically reduced as throughfall and litter floor leachates percolated through the topsoil, where the measured mean values (2 µeq L-1) were much lower than the critical limits established for coniferous stands (14 µeq L-1). The seasonal temperature dependence of throughfall DOC and DON concentration suggests that the microbial community living on the needles was the main source of dissolved organic matter. Most of DOC and DON infiltrating from the litter floor were retained in the mineral soil. The rainfall amount was the only climatic factor exerting a control on DOC and N compounds in throughfall and forest floor leachates over a decadal period. Concentration of SO4 and NO3 declined by 50% and 26% respectively in throughfall deposition. Trends of NO3 and SO4 in forest floor leachates and mineral soil solution mirrored declining depositions. No trends in both DON and DOC concentration and in DOC/DON ratio in soil solutions were observed. These outcomes suggest that the declining NO3 and SO4 atmospheric inputs did not influence the dynamic of DON and DOC in the Val Masino forest. The results of this study are particularly relevant, as they are based on a comprehensive survey of all the main compartments of the forest ecosystem. Moreover, this kind of long-term research has rarely been carried out in the Alpine region.


2012 ◽  
Vol 46 ◽  
pp. 165-173 ◽  
Author(s):  
Yang Cao ◽  
Tarja Lehto ◽  
Sirpa Piirainen ◽  
Jussi V.K. Kukkonen ◽  
Paavo Pelkonen

2018 ◽  
Vol 24 (8) ◽  
pp. 3603-3619 ◽  
Author(s):  
James Johnson ◽  
Elisabeth Graf Pannatier ◽  
Stefano Carnicelli ◽  
Guia Cecchini ◽  
Nicholas Clarke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document