scholarly journals Spinal Cord Blood Flow after Ischemic Preconditioning in a Rat Model of Spinal Cord Ischemia

2004 ◽  
Vol 4 ◽  
pp. 892-898 ◽  
Author(s):  
David Zvara ◽  
James M. Zboyovski ◽  
Dwight D. Deal ◽  
Jason C. Vernon ◽  
David M. Colonna

Spinal cord blood flow after ischemic preconditioning is poorly characterized. This study is designed to evaluate spinal cord blood flow patterns in animals after acute ischemic preconditioning. Experiment 1: After a laminectomy and placement of a laser Doppler probe over the lumbar spinal cord to measure spinal cord blood flow, 16 male Sprague-Dawley rats were randomized into two groups: ischemic preconditioning (IPC, n = 8), and control (CTRL, n = 8). Rats in the CTRL and the IPC groups were subjected to 12 min of ischemia directly followed by 60 min of reperfusion. IPC rats received 3 min of IPC and 30 min of reperfusion prior to the 12-min insult period. Experiment 2: After instrumentation, the rats were randomized into three groups: control (CTRL, n = 7), ischemic preconditioning (IPC, n = 7), and time control (TC, n = 4). Rats in the CTRL and the IPC groups were subjected to the same ischemia and reperfusion protocol as above. The TC group was anesthetized for the same time period as the CTRL and the IPC groups, but had no ischemic intervention. Microspheres were injected at baseline and at 15 and 60 min into the final reperfusion. All rats were euthanized and tissue harvested for spinal cord blood flow analysis. In Experiment 1, there was a slight, significant difference in spinal cord blood flow during the ischemic period; however, this difference soon disappeared during reperfusion. In experiment 2, there was no difference in blood flow at any experimental time. The results of these experiments demonstrate that IPC slightly enhances blood flow to the spinal cord during ischemia; however, this effect is not sustained during the reperfusion period.

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251271
Author(s):  
David R. Busch ◽  
Wei Lin ◽  
Chia Chieh Goh ◽  
Feng Gao ◽  
Nicholas Larson ◽  
...  

Spinal cord ischemia leads to iatrogenic injury in multiple surgical fields, and the ability to immediately identify onset and anatomic origin of ischemia is critical to its management. Current clinical monitoring, however, does not directly measure spinal cord blood flow, resulting in poor sensitivity/specificity, delayed alerts, and delayed intervention. We have developed an epidural device employing diffuse correlation spectroscopy (DCS) to monitor spinal cord ischemia continuously at multiple positions. We investigate the ability of this device to localize spinal cord ischemia in a porcine model and validate DCS versus Laser Doppler Flowmetry (LDF). Specifically, we demonstrate continuous (>0.1Hz) spatially resolved (3 locations) monitoring of spinal cord blood flow in a purely ischemic model with an epidural DCS probe. Changes in blood flow measured by DCS and LDF were highly correlated (r = 0.83). Spinal cord blood flow measured by DCS caudal to aortic occlusion decreased 62%. This monitor demonstrated a sensitivity of 0.87 and specificity of 0.91 for detection of a 25% decrease in flow. This technology may enable early identification and critically important localization of spinal cord ischemia.


1993 ◽  
Vol 6 (2) ◽  
pp. 146???154 ◽  
Author(s):  
Richard K. Osenbach ◽  
Patrick W. Hitchon ◽  
Loren Mouw ◽  
Thoru Yamada

2020 ◽  
Author(s):  
David R. Busch ◽  
Wei Lin ◽  
Chia Chieh Goh ◽  
Feng Gao ◽  
Nicholas Larson ◽  
...  

AbstractSpinal cord ischemia leads to iatrogenic injury in multiple surgical fields, and the ability to immediately identify onset and anatomic origin of ischemia is critical to its management. Current clinical monitoring, however, does not directly measure spinal cord blood flow, resulting in poor sensitivity/specificity, delayed alerts, and delayed intervention. We have developed an epidural device employing diffuse correlation spectroscopy (DCS) to monitor spinal cord ischemia continuously at multiple positions. We investigate the ability of this device to localize spinal cord ischemia in a porcine model and validate DCS versus Laser Doppler Flowmetry (LDF).Specifically, we demonstrate continuous (>0.1Hz) spatially resolved (3 locations) monitoring of spinal cord blood flow in a purely ischemic model with an epidural DCS probe. Changes in blood flow measured by DCS and LDF were highly correlated (r=0.83). Spinal cord blood flow measured by DCS caudal to aortic occlusion decreased 62%, with a sensitivity of 0.87 and specificity of 0.91 for detection of a 25% decrease in flow. This technology may enable early identification and critically important localization of spinal cord ischemia.


Neurosurgery ◽  
1998 ◽  
Vol 42 (3) ◽  
pp. 626-634 ◽  
Author(s):  
Yamada Tomonori ◽  
Morimoto Tetsuya ◽  
Nakase Hiroyuki ◽  
Hirabayashi Hidehiro ◽  
Hiramatsu Ken-ichiro ◽  
...  

1989 ◽  
Vol 70 (5) ◽  
pp. 780-784 ◽  
Author(s):  
Toshihisa Sakamoto ◽  
William W. Monafo

✓ Spinal cord ischemia may accompany surgical procedures on the aorta or vertebral column. Regional spinal cord blood flow (SCBF) was measured at five vertebral levels in the spinal cords of pentobarbital-anesthetized rats based on the distribution of intravenously injected carbon-14-labeled butanol. In seven normal rats, mean SCBF (± standard error of the mean) ranged from 52.7 ± 5.4 to 68.5 ± 4.9 ml ⋅ min−1 ⋅ 100 gm−1 (depending on the level, being lowest at the thoracic levels) and mean arterial blood pressure (MABP) was 126 mm Hg. Corporal hypothermia (mean rectal temperature 28.1° ± 0.6°C) was induced by cold exposure in seven other rats, and SCBF, measured immediately thereafter, was significantly elevated at all five levels by 52% to 69% compared to the normal group. However, MABP was elevated in the hypothermic group to 165 ± 4 mm Hg (p < 0.0001). Therefore, in seven additional hypothermic rats, MABP was maintained at the control level by withdrawal of arterial blood as necessary. In these animals, SCBF at all levels was still significantly elevated compared with the normal group and the values were nearly identical to those measured in the hypertensive hypothermic rats. It was concluded that hemodynamic autoregulation of SCBF is impaired in the presence of moderate systemic hypothermia in pentobarbital-anesthetized rats.


Sign in / Sign up

Export Citation Format

Share Document