scholarly journals PyRAD: assembly ofde novoRADseq loci for phylogenetic analyses

2013 ◽  
Author(s):  
Deren A. R. Eaton

Restriction-site associated genomic markers are a powerful tool for investigating evolutionary questions at the population level, but are limited in their utility at deeper phylogenetic scales where fewer orthologous loci are typically recovered across disparate taxa. While this limitation stems in part from mutations to restriction recognition sites that disrupt data generation, an alternative source of data loss comes from the failure to identify homology during bioinformatic analyses. Clustering methods that allow for lower similarity thresholds and the inclusion of indel variation will perform better at assembling RADseq loci at the phylogenetic scale.PyRADis a pipeline to assemblede novoRADseq loci with the aim of optimizing coverage across phylogenetic data sets. It utilizes a wrapper around an alignment-clustering algorithm which allows for indel variation within and between samples, as well as for incomplete overlap among reads (e.g., paired-end). Here I comparePyRADwith the programStacksin their performance analyzing a simulated RADseq data set that includes indel variation. Indels disrupt clustering of homologous loci inStacksbut not inPyRAD, such that the latter recovers more shared loci across disparate taxa. I show through re-analysis of an empirical RADseq data set that indels are a common feature of such data, even at shallow phylogenetic scales.PyRADutilizes parallel processing as well as an optional hierarchical clustering method which allow it to rapidly assemble phylogenetic data sets with hundreds of sampled individuals.

Author(s):  
Hao Liu ◽  
◽  
Satoshi Oyama ◽  
Masahito Kurihara ◽  
Haruhiko Sato

Clustering is an important tool for data analysis and many clustering techniques have been proposed over the past years. Among them are density-based clustering methods, which have several benefits such as the number of clusters is not required before carrying out clustering; the detected clusters can be represented in an arbitrary shape and outliers can be detected and removed. Recently, the density-based algorithms were extended with the fuzzy set theory, which has made these algorithm more robust. However, the density-based clustering algorithms usually require a time complexity ofO(n2) wherenis the number of data in the data set, implying that they are not suitable to work with large scale data sets. In this paper, a novel clustering algorithm called landmark fuzzy neighborhood DBSCAN (landmark FN-DBSCAN) is proposed. The concept, landmark, is used to represent a subset of the input data set which makes the algorithm efficient on large scale data sets. We give a theoretical analysis on time complexity and space complexity, which shows both of them are linear to the size of the data set. The experiments show that the landmark FN-DBSCAN is much faster than FN-DBSCAN and provides a very good quality of clustering.


2015 ◽  
Vol 17 (5) ◽  
pp. 719-732
Author(s):  
Dulakshi Santhusitha Kumari Karunasingha ◽  
Shie-Yui Liong

A simple clustering method is proposed for extracting representative subsets from lengthy data sets. The main purpose of the extracted subset of data is to use it to build prediction models (of the form of approximating functional relationships) instead of using the entire large data set. Such smaller subsets of data are often required in exploratory analysis stages of studies that involve resource consuming investigations. A few recent studies have used a subtractive clustering method (SCM) for such data extraction, in the absence of clustering methods for function approximation. SCM, however, requires several parameters to be specified. This study proposes a clustering method, which requires only a single parameter to be specified, yet it is shown to be as effective as the SCM. A method to find suitable values for the parameter is also proposed. Due to having only a single parameter, using the proposed clustering method is shown to be orders of magnitudes more efficient than using SCM. The effectiveness of the proposed method is demonstrated on phase space prediction of three univariate time series and prediction of two multivariate data sets. Some drawbacks of SCM when applied for data extraction are identified, and the proposed method is shown to be a solution for them.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 699-713
Author(s):  
Noah A Rosenberg ◽  
Terry Burke ◽  
Kari Elo ◽  
Marcus W Feldman ◽  
Paul J Freidlin ◽  
...  

Abstract We tested the utility of genetic cluster analysis in ascertaining population structure of a large data set for which population structure was previously known. Each of 600 individuals representing 20 distinct chicken breeds was genotyped for 27 microsatellite loci, and individual multilocus genotypes were used to infer genetic clusters. Individuals from each breed were inferred to belong mostly to the same cluster. The clustering success rate, measuring the fraction of individuals that were properly inferred to belong to their correct breeds, was consistently ~98%. When markers of highest expected heterozygosity were used, genotypes that included at least 8–10 highly variable markers from among the 27 markers genotyped also achieved >95% clustering success. When 12–15 highly variable markers and only 15–20 of the 30 individuals per breed were used, clustering success was at least 90%. We suggest that in species for which population structure is of interest, databases of multilocus genotypes at highly variable markers should be compiled. These genotypes could then be used as training samples for genetic cluster analysis and to facilitate assignments of individuals of unknown origin to populations. The clustering algorithm has potential applications in defining the within-species genetic units that are useful in problems of conservation.


2011 ◽  
pp. 24-32 ◽  
Author(s):  
Nicoleta Rogovschi ◽  
Mustapha Lebbah ◽  
Younès Bennani

Most traditional clustering algorithms are limited to handle data sets that contain either continuous or categorical variables. However data sets with mixed types of variables are commonly used in data mining field. In this paper we introduce a weighted self-organizing map for clustering, analysis and visualization mixed data (continuous/binary). The learning of weights and prototypes is done in a simultaneous manner assuring an optimized data clustering. More variables has a high weight, more the clustering algorithm will take into account the informations transmitted by these variables. The learning of these topological maps is combined with a weighting process of different variables by computing weights which influence the quality of clustering. We illustrate the power of this method with data sets taken from a public data set repository: a handwritten digit data set, Zoo data set and other three mixed data sets. The results show a good quality of the topological ordering and homogenous clustering.


2012 ◽  
Vol 263-266 ◽  
pp. 2173-2178
Author(s):  
Xin Guang Li ◽  
Min Feng Yao ◽  
Li Rui Jian ◽  
Zhen Jiang Li

A probabilistic neural network (PNN) speech recognition model based on the partition clustering algorithm is proposed in this paper. The most important advantage of PNN is that training is easy and instantaneous. Therefore, PNN is capable of dealing with real time speech recognition. Besides, in order to increase the performance of PNN, the selection of data set is one of the most important issues. In this paper, using the partition clustering algorithm to select data is proposed. The proposed model is tested on two data sets from the field of spoken Arabic numbers, with promising results. The performance of the proposed model is compared to single back propagation neural network and integrated back propagation neural network. The final comparison result shows that the proposed model performs better than the other two neural networks, and has an accuracy rate of 92.41%.


2020 ◽  
Vol 94 (11) ◽  
Author(s):  
Shengzhong Xu ◽  
Liang Zhou ◽  
Xiaosha Liang ◽  
Yifan Zhou ◽  
Hao Chen ◽  
...  

ABSTRACT Virophages are small parasitic double-stranded DNA (dsDNA) viruses of giant dsDNA viruses infecting unicellular eukaryotes. Except for a few isolated virophages characterized by parasitization mechanisms, features of virophages discovered in metagenomic data sets remain largely unknown. Here, the complete genomes of seven virophages (26.6 to 31.5 kbp) and four large DNA viruses (190.4 to 392.5 kbp) that coexist in the freshwater lake Dishui Lake, Shanghai, China, have been identified based on environmental metagenomic investigation. Both genomic and phylogenetic analyses indicate that Dishui Lake virophages (DSLVs) are closely related to each other and to other lake virophages, and Dishui Lake large DNA viruses are affiliated with the micro-green alga-infecting Prasinovirus of the Phycodnaviridae (named Dishui Lake phycodnaviruses [DSLPVs]) and protist (protozoan and alga)-infecting Mimiviridae (named Dishui Lake large alga virus [DSLLAV]). The DSLVs possess more genes with closer homology to that of large alga viruses than to that of giant protozoan viruses. Furthermore, the DSLVs are strongly associated with large green alga viruses, including DSLPV4 and DSLLAV1, based on codon usage as well as oligonucleotide frequency and correlation analyses. Surprisingly, a nonhomologous CRISPR-Cas like system is found in DSLLAV1, which appears to protect DSLLAV1 from the parasitization of DSLV5 and DSLV8. These results suggest that novel cell-virus-virophage (CVv) tripartite infection systems of green algae, large green alga virus (Phycodnaviridae- and Mimiviridae-related), and virophage exist in Dishui Lake, which will contribute to further deep investigations of the evolutionary interaction of virophages and large alga viruses as well as of the essential roles that the CVv plays in the ecology of algae. IMPORTANCE Virophages are small parasitizing viruses of large/giant viruses. To our knowledge, the few isolated virophages all parasitize giant protozoan viruses (Mimiviridae) for propagation and form a tripartite infection system with hosts, here named the cell-virus-virophage (CVv) system. However, the CVv system remains largely unknown in environmental metagenomic data sets. In this study, we systematically investigated the metagenomic data set from the freshwater lake Dishui Lake, Shanghai, China. Consequently, four novel large alga viruses and seven virophages were discovered to coexist in Dishui Lake. Surprisingly, a novel CVv tripartite infection system comprising green algae, large green alga viruses (Phycodnaviridae- and Mimiviridae-related), and virophages was identified based on genetic link, genomic signature, and CRISPR system analyses. Meanwhile, a nonhomologous CRISPR-like system was found in Dishui Lake large alga viruses, which appears to protect the virus host from the infection of Dishui Lake virophages (DSLVs). These findings are critical to give insight into the potential significance of CVv in global evolution and ecology.


2020 ◽  
Vol 12 (23) ◽  
pp. 4007
Author(s):  
Kasra Rafiezadeh Shahi ◽  
Pedram Ghamisi ◽  
Behnood Rasti ◽  
Robert Jackisch ◽  
Paul Scheunders ◽  
...  

The increasing amount of information acquired by imaging sensors in Earth Sciences results in the availability of a multitude of complementary data (e.g., spectral, spatial, elevation) for monitoring of the Earth’s surface. Many studies were devoted to investigating the usage of multi-sensor data sets in the performance of supervised learning-based approaches at various tasks (i.e., classification and regression) while unsupervised learning-based approaches have received less attention. In this paper, we propose a new approach to fuse multiple data sets from imaging sensors using a multi-sensor sparse-based clustering algorithm (Multi-SSC). A technique for the extraction of spatial features (i.e., morphological profiles (MPs) and invariant attribute profiles (IAPs)) is applied to high spatial-resolution data to derive the spatial and contextual information. This information is then fused with spectrally rich data such as multi- or hyperspectral data. In order to fuse multi-sensor data sets a hierarchical sparse subspace clustering approach is employed. More specifically, a lasso-based binary algorithm is used to fuse the spectral and spatial information prior to automatic clustering. The proposed framework ensures that the generated clustering map is smooth and preserves the spatial structures of the scene. In order to evaluate the generalization capability of the proposed approach, we investigate its performance not only on diverse scenes but also on different sensors and data types. The first two data sets are geological data sets, which consist of hyperspectral and RGB data. The third data set is the well-known benchmark Trento data set, including hyperspectral and LiDAR data. Experimental results indicate that this novel multi-sensor clustering algorithm can provide an accurate clustering map compared to the state-of-the-art sparse subspace-based clustering algorithms.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Chunzhong Li ◽  
Zongben Xu

Structure of data set is of critical importance in identifying clusters, especially the density difference feature. In this paper, we present a clustering algorithm based on density consistency, which is a filtering process to identify same structure feature and classify them into same cluster. This method is not restricted by the shapes and high dimension data set, and meanwhile it is robust to noises and outliers. Extensive experiments on synthetic and real world data sets validate the proposed the new clustering algorithm.


Author(s):  
Yasunori Endo ◽  
◽  
Tomoyuki Suzuki ◽  
Naohiko Kinoshita ◽  
Yukihiro Hamasuna ◽  
...  

The fuzzy non-metric model (FNM) is a representative non-hierarchical clustering method, which is very useful because the belongingness or the membership degree of each datum to each cluster can be calculated directly from the dissimilarities between data and the cluster centers are not used. However, the original FNM cannot handle data with uncertainty. In this study, we refer to the data with uncertainty as “uncertain data,” e.g., incomplete data or data that have errors. Previously, a methods was proposed based on the concept of a tolerance vector for handling uncertain data and some clustering methods were constructed according to this concept, e.g. fuzzyc-means for data with tolerance. These methods can handle uncertain data in the framework of optimization. Thus, in the present study, we apply the concept to FNM. First, we propose a new clustering algorithm based on FNM using the concept of tolerance, which we refer to as the fuzzy non-metric model for data with tolerance. Second, we show that the proposed algorithm can handle incomplete data sets. Third, we verify the effectiveness of the proposed algorithm based on comparisons with conventional methods for incomplete data sets in some numerical examples.


2013 ◽  
Vol 411-414 ◽  
pp. 1884-1893
Author(s):  
Yong Chun Cao ◽  
Ya Bin Shao ◽  
Shuang Liang Tian ◽  
Zheng Qi Cai

Due to many of the clustering algorithms based on GAs suffer from degeneracy and are easy to fall in local optima, a novel dynamic genetic algorithm for clustering problems (DGA) is proposed. The algorithm adopted the variable length coding to represent individuals and processed the parallel crossover operation in the subpopulation with individuals of the same length, which allows the DGA algorithm clustering to explore the search space more effectively and can automatically obtain the proper number of clusters and the proper partition from a given data set; the algorithm used the dynamic crossover probability and adaptive mutation probability, which prevented the dynamic clustering algorithm from getting stuck at a local optimal solution. The clustering results in the experiments on three artificial data sets and two real-life data sets show that the DGA algorithm derives better performance and higher accuracy on clustering problems.


Sign in / Sign up

Export Citation Format

Share Document