A Dynamic Genetic Algorithm for Clustering Problems

2013 ◽  
Vol 411-414 ◽  
pp. 1884-1893
Author(s):  
Yong Chun Cao ◽  
Ya Bin Shao ◽  
Shuang Liang Tian ◽  
Zheng Qi Cai

Due to many of the clustering algorithms based on GAs suffer from degeneracy and are easy to fall in local optima, a novel dynamic genetic algorithm for clustering problems (DGA) is proposed. The algorithm adopted the variable length coding to represent individuals and processed the parallel crossover operation in the subpopulation with individuals of the same length, which allows the DGA algorithm clustering to explore the search space more effectively and can automatically obtain the proper number of clusters and the proper partition from a given data set; the algorithm used the dynamic crossover probability and adaptive mutation probability, which prevented the dynamic clustering algorithm from getting stuck at a local optimal solution. The clustering results in the experiments on three artificial data sets and two real-life data sets show that the DGA algorithm derives better performance and higher accuracy on clustering problems.

2013 ◽  
Vol 3 (4) ◽  
pp. 1-14 ◽  
Author(s):  
S. Sampath ◽  
B. Ramya

Cluster analysis is a branch of data mining, which plays a vital role in bringing out hidden information in databases. Clustering algorithms help medical researchers in identifying the presence of natural subgroups in a data set. Different types of clustering algorithms are available in the literature. The most popular among them is k-means clustering. Even though k-means clustering is a popular clustering method widely used, its application requires the knowledge of the number of clusters present in the given data set. Several solutions are available in literature to overcome this limitation. The k-means clustering method creates a disjoint and exhaustive partition of the data set. However, in some situations one can come across objects that belong to more than one cluster. In this paper, a clustering algorithm capable of producing rough clusters automatically without requiring the user to give as input the number of clusters to be produced. The efficiency of the algorithm in detecting the number of clusters present in the data set has been studied with the help of some real life data sets. Further, a nonparametric statistical analysis on the results of the experimental study has been carried out in order to analyze the efficiency of the proposed algorithm in automatic detection of the number of clusters in the data set with the help of rough version of Davies-Bouldin index.


2011 ◽  
pp. 24-32 ◽  
Author(s):  
Nicoleta Rogovschi ◽  
Mustapha Lebbah ◽  
Younès Bennani

Most traditional clustering algorithms are limited to handle data sets that contain either continuous or categorical variables. However data sets with mixed types of variables are commonly used in data mining field. In this paper we introduce a weighted self-organizing map for clustering, analysis and visualization mixed data (continuous/binary). The learning of weights and prototypes is done in a simultaneous manner assuring an optimized data clustering. More variables has a high weight, more the clustering algorithm will take into account the informations transmitted by these variables. The learning of these topological maps is combined with a weighting process of different variables by computing weights which influence the quality of clustering. We illustrate the power of this method with data sets taken from a public data set repository: a handwritten digit data set, Zoo data set and other three mixed data sets. The results show a good quality of the topological ordering and homogenous clustering.


2020 ◽  
Vol 12 (23) ◽  
pp. 4007
Author(s):  
Kasra Rafiezadeh Shahi ◽  
Pedram Ghamisi ◽  
Behnood Rasti ◽  
Robert Jackisch ◽  
Paul Scheunders ◽  
...  

The increasing amount of information acquired by imaging sensors in Earth Sciences results in the availability of a multitude of complementary data (e.g., spectral, spatial, elevation) for monitoring of the Earth’s surface. Many studies were devoted to investigating the usage of multi-sensor data sets in the performance of supervised learning-based approaches at various tasks (i.e., classification and regression) while unsupervised learning-based approaches have received less attention. In this paper, we propose a new approach to fuse multiple data sets from imaging sensors using a multi-sensor sparse-based clustering algorithm (Multi-SSC). A technique for the extraction of spatial features (i.e., morphological profiles (MPs) and invariant attribute profiles (IAPs)) is applied to high spatial-resolution data to derive the spatial and contextual information. This information is then fused with spectrally rich data such as multi- or hyperspectral data. In order to fuse multi-sensor data sets a hierarchical sparse subspace clustering approach is employed. More specifically, a lasso-based binary algorithm is used to fuse the spectral and spatial information prior to automatic clustering. The proposed framework ensures that the generated clustering map is smooth and preserves the spatial structures of the scene. In order to evaluate the generalization capability of the proposed approach, we investigate its performance not only on diverse scenes but also on different sensors and data types. The first two data sets are geological data sets, which consist of hyperspectral and RGB data. The third data set is the well-known benchmark Trento data set, including hyperspectral and LiDAR data. Experimental results indicate that this novel multi-sensor clustering algorithm can provide an accurate clustering map compared to the state-of-the-art sparse subspace-based clustering algorithms.


Author(s):  
UREERAT WATTANACHON ◽  
CHIDCHANOK LURSINSAP

Existing clustering algorithms, such as single-link clustering, k-means, CURE, and CSM are designed to find clusters based on predefined parameters specified by users. These algorithms may be unsuccessful if the choice of parameters is inappropriate with respect to the data set being clustered. Most of these algorithms work very well for compact and hyper-spherical clusters. In this paper, a new hybrid clustering algorithm called Self-Partition and Self-Merging (SPSM) is proposed. The SPSM algorithm partitions the input data set into several subclusters in the first phase and, then, removes the noisy data in the second phase. In the third phase, the normal subclusters are continuously merged to form the larger clusters based on the inter-cluster distance and intra-cluster distance criteria. From the experimental results, the SPSM algorithm is very efficient to handle the noisy data set, and to cluster the data sets of arbitrary shapes of different density. Several examples for color image show the versatility of the proposed method and compare with results described in the literature for the same images. The computational complexity of the SPSM algorithm is O(N2), where N is the number of data points.


2021 ◽  
Vol 4 ◽  
Author(s):  
Jie Yang ◽  
Yu-Kai Wang ◽  
Xin Yao ◽  
Chin-Teng Lin

The K-means algorithm is a widely used clustering algorithm that offers simplicity and efficiency. However, the traditional K-means algorithm uses a random method to determine the initial cluster centers, which make clustering results prone to local optima and then result in worse clustering performance. In this research, we propose an adaptive initialization method for the K-means algorithm (AIMK) which can adapt to the various characteristics in different datasets and obtain better clustering performance with stable results. For larger or higher-dimensional datasets, we even leverage random sampling in AIMK (name as AIMK-RS) to reduce the time complexity. 22 real-world datasets were applied for performance comparisons. The experimental results show AIMK and AIMK-RS outperform the current initialization methods and several well-known clustering algorithms. Specifically, AIMK-RS can significantly reduce the time complexity to O (n). Moreover, we exploit AIMK to initialize K-medoids and spectral clustering, and better performance is also explored. The above results demonstrate superior performance and good scalability by AIMK or AIMK-RS. In the future, we would like to apply AIMK to more partition-based clustering algorithms to solve real-life practical problems.


2021 ◽  
Vol 37 (1) ◽  
pp. 71-89
Author(s):  
Vu-Tuan Dang ◽  
Viet-Vu Vu ◽  
Hong-Quan Do ◽  
Thi Kieu Oanh Le

During the past few years, semi-supervised clustering has emerged as a new interesting direction in machine learning research. In a semi-supervised clustering algorithm, the clustering results can be significantly improved by using side information, which is available or collected from users. There are two main kinds of side information that can be learned in semi-supervised clustering algorithms: the class labels - called seeds or the pairwise constraints. The first semi-supervised clustering was introduced in 2000, and since that, many algorithms have been presented in literature. However, it is not easy to use both types of side information in the same algorithm. To address the problem, this paper proposes a semi-supervised graph based clustering algorithm that tries to use seeds and constraints in the clustering process, called MCSSGC. Moreover, we introduces a simple but efficient active learning method to collect the constraints that can boost the performance of MCSSGC, named KMMFFQS. In order to verify effectiveness of the proposed algorithm, we conducted a series of experiments not only on real data sets from UCI, but also on a document data set applied in an Information Extraction of Vietnamese documents. These obtained results show that the proposed algorithm can significantly improve the clustering process compared to some recent algorithms.


Author(s):  
Derrick S. Boone

The accuracy of “stopping rules” for determining the number of clusters in a data set is examined as a function of the underlying clustering algorithm being used. Using a Monte Carlo study, various stopping rules, used in conjunction with six clustering algorithms, are compared to determine which rule/algorithm combinations best recover the true number of clusters. The rules and algorithms are tested using disparately sized, artificially generated data sets that contained multiple numbers and levels of clusters, variables, noise, outliers, and elongated and unequally sized clusters. The results indicate that stopping rule accuracy depends on the underlying clustering algorithm being used. The cubic clustering criterion (CCC), when used in conjunction with mixture models or Ward’s method, recovers the true number of clusters more accurately than other rules and algorithms. However, the CCC was more likely than other stopping rules to report more clusters than are actually present. Implications are discussed.


2017 ◽  
Vol 26 (1) ◽  
pp. 153-168 ◽  
Author(s):  
Vijay Kumar ◽  
Jitender Kumar Chhabra ◽  
Dinesh Kumar

AbstractThe main problem of classical clustering technique is that it is easily trapped in the local optima. An attempt has been made to solve this problem by proposing the grey wolf algorithm (GWA)-based clustering technique, called GWA clustering (GWAC), through this paper. The search capability of GWA is used to search the optimal cluster centers in the given feature space. The agent representation is used to encode the centers of clusters. The proposed GWAC technique is tested on both artificial and real-life data sets and compared to six well-known metaheuristic-based clustering techniques. The computational results are encouraging and demonstrate that GWAC provides better values in terms of precision, recall, G-measure, and intracluster distances. GWAC is further applied for gene expression data set and its performance is compared to other techniques. Experimental results reveal the efficiency of the GWAC over other techniques.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Singh Vijendra ◽  
Sahoo Laxman

Clustering high-dimensional data has been a major challenge due to the inherent sparsity of the points. Most existing clustering algorithms become substantially inefficient if the required similarity measure is computed between data points in the full-dimensional space. In this paper, we have presented a robust multi objective subspace clustering (MOSCL) algorithm for the challenging problem of high-dimensional clustering. The first phase of MOSCL performs subspace relevance analysis by detecting dense and sparse regions with their locations in data set. After detection of dense regions it eliminates outliers. MOSCL discovers subspaces in dense regions of data set and produces subspace clusters. In thorough experiments on synthetic and real-world data sets, we demonstrate that MOSCL for subspace clustering is superior to PROCLUS clustering algorithm. Additionally we investigate the effects of first phase for detecting dense regions on the results of subspace clustering. Our results indicate that removing outliers improves the accuracy of subspace clustering. The clustering results are validated by clustering error (CE) distance on various data sets. MOSCL can discover the clusters in all subspaces with high quality, and the efficiency of MOSCL outperforms PROCLUS.


2018 ◽  
Vol 30 (6) ◽  
pp. 1624-1646 ◽  
Author(s):  
Qidong Liu ◽  
Ruisheng Zhang ◽  
Zhili Zhao ◽  
Zhenghai Wang ◽  
Mengyao Jiao ◽  
...  

Minimax similarity stresses the connectedness of points via mediating elements rather than favoring high mutual similarity. The grouping principle yields superior clustering results when mining arbitrarily-shaped clusters in data. However, it is not robust against noises and outliers in the data. There are two main problems with the grouping principle: first, a single object that is far away from all other objects defines a separate cluster, and second, two connected clusters would be regarded as two parts of one cluster. In order to solve such problems, we propose robust minimum spanning tree (MST)-based clustering algorithm in this letter. First, we separate the connected objects by applying a density-based coarsening phase, resulting in a low-rank matrix in which the element denotes the supernode by combining a set of nodes. Then a greedy method is presented to partition those supernodes through working on the low-rank matrix. Instead of removing the longest edges from MST, our algorithm groups the data set based on the minimax similarity. Finally, the assignment of all data points can be achieved through their corresponding supernodes. Experimental results on many synthetic and real-world data sets show that our algorithm consistently outperforms compared clustering algorithms.


Sign in / Sign up

Export Citation Format

Share Document