scholarly journals Gene regulatory network inference from perturbed time-series expression data via ordered dynamical expansion of non-steady state actors

2014 ◽  
Author(s):  
Mahdi Zamanighomi ◽  
Mostafa Zamanian ◽  
Michael J Kimber ◽  
Zhengdao Wang

The reconstruction of gene regulatory networks from gene expression data has been the subject of intense research activity. A variety of models and methods have been developed to address different aspects of this important problem. However, these techniques are often difficult to scale, are narrowly focused on particular biological and experimental platforms, and require experimental data that are typically unavailable and difficult to ascertain. The more recent availability of higher-throughput sequencing platforms, combined with more precise modes of genetic perturbation, present an opportunity to formulate more robust and comprehensive approaches to gene network inference. Here, we propose a step-wise framework for identifying gene-gene regulatory interactions that expand from a known point of genetic or chemical perturbation using time series gene expression data. This novel approach sequentially identifies non-steady state genes post-perturbation and incorporates them into a growing series of low-complexity optimization problems. The governing ordinary differential equations of this model are rooted in the biophysics of stochastic molecular events that underlie gene regulation, delineating roles for both protein and RNA-mediated gene regulation. We show the successful application of our core algorithms for network inference using simulated and real datasets.

2018 ◽  
Vol 19 (4) ◽  
pp. 444-465
Author(s):  
William Chad Young ◽  
Ka Yee Yeung ◽  
Adrian E Raftery

Gene regulatory network reconstruction is an essential task of genomics in order to further our understanding of how genes interact dynamically with each other. The most readily available data, however, are from steady-state observations. These data are not as informative about the relational dynamics between genes as knockout or over-expression experiments, which attempt to control the expression of individual genes. We develop a new framework for network inference using samples from the equilibrium distribution of a vector autoregressive (VAR) time-series model which can be applied to steady-state gene expression data. We explore the theoretical aspects of our method and apply the method to synthetic gene expression data generated using GeneNetWeaver.


PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e72103 ◽  
Author(s):  
Yi Kan Wang ◽  
Daniel G. Hurley ◽  
Santiago Schnell ◽  
Cristin G. Print ◽  
Edmund J. Crampin

Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 61
Author(s):  
Kuan Liu ◽  
Haiyuan Liu ◽  
Dongyan Sun ◽  
Lei Zhang

The reconstruction of gene regulatory networks based on gene expression data can effectively uncover regulatory relationships between genes and provide a deeper understanding of biological control processes. Non-linear dependence is a common problem in the regulatory mechanisms of gene regulatory networks. Various methods based on information theory have been developed to infer networks. However, the methods have introduced many redundant regulatory relationships in the network inference process. A recent measurement method called distance correlation has, in many cases, shown strong and computationally efficient non-linear correlations. In this paper, we propose a novel regulatory network inference method called the distance-correlation and network topology centrality network (DCNTC) method. The method is based on and extends the Local Density Measurement of Network Node Centrality (LDCNET) algorithm, which has the same choice of network centrality ranking as the LDCNET algorithm, but uses a simpler and more efficient distance correlation measure of association between genes. In this work, we integrate distance correlation and network topological centrality into the reasoning about the structure of gene regulatory networks. We will select optimal thresholds based on the characteristics of the distribution of each gene pair in relation to distance correlation. Experiments were carried out on four network datasets and their performance was compared.


BMC Genomics ◽  
2011 ◽  
Vol 12 (Suppl 5) ◽  
pp. S13 ◽  
Author(s):  
Haoni Li ◽  
Nan Wang ◽  
Ping Gong ◽  
Edward J Perkins ◽  
Chaoyang Zhang

Sign in / Sign up

Export Citation Format

Share Document