scholarly journals Nanoscale architecture of the axon initial segment reveals an organized and robust scaffold

2015 ◽  
Author(s):  
Christophe Leterrier ◽  
Jean Potier ◽  
Ghislaine Caillol ◽  
Claire Debarnot ◽  
Fanny Rueda Boroni ◽  
...  

The Axon Initial Segment [AIS], located within the first 30 μm of the axon, has two essential roles in generating action potentials and maintaining axonal identity. AIS assembly depends on a βIV-spectrin / ankyrin G scaffold, but its macromolecular arrangement is not well understood. Here we quantitatively determined the AIS nanoscale architecture using STochastic Optical Reconstruction Microscopy [STORM]. First we directly demonstrate that the 190-nm periodicity of the AIS submembrane lattice results from longitudinal, head-to-head βIV-spectrin molecules connecting actin rings. Using multicolor 3D-STORM, we resolve the nanoscale organization of ankyrin G: its aminoterminus associates with the submembrane lattice, whereas the carboxyterminus radially extends (~32 nm on average) toward the cytosol. This AIS nano-architecture is highly resistant to cytoskeletal perturbations, advocating its role in structural stabilization. Our findings provide a comprehensive view of the AIS molecular architecture, and will help understanding the crucial physiological functions of this compartment.

2019 ◽  
Vol 132 (18) ◽  
pp. jcs222802 ◽  
Author(s):  
Bouchra Khalaf ◽  
Alessandro Roncador ◽  
Francesca Pischedda ◽  
Antonio Casini ◽  
Sabine Thomas ◽  
...  

2007 ◽  
Vol 120 (6) ◽  
pp. 953-963 ◽  
Author(s):  
H. B. Rasmussen ◽  
C. Frokjaer-Jensen ◽  
C. S. Jensen ◽  
H. S. Jensen ◽  
N. K. Jorgensen ◽  
...  

2016 ◽  
Vol 215 (1) ◽  
pp. 9-11 ◽  
Author(s):  
Yu-Mei Huang ◽  
Matthew N. Rasband

What prevents the movement of membrane molecules between axonal and somatodendritic domains is unclear. In this issue, Albrecht et. al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201603108) demonstrate via high-speed single-particle tracking and superresolution microscopy that lipid-anchored molecules in the axon initial segment are confined to membrane domains separated by periodically spaced actin rings.


2018 ◽  
Author(s):  
Maria Teleńczuk ◽  
Romain Brette ◽  
Alain Destexhe ◽  
Bartosz Teleńczuk

AbstractAction potentials (APs) are electric phenomena that are recorded both intracellularly and extracellularly. APs are usually initiated in the short segment of the axon called the axon initial segment (AIS). It was recently proposed that at onset of an AP the soma and the AIS form a dipole. We study the extracellular signature (the extracellular action potential, EAP) generated by such a dipole. First, we demonstrate the formation of the dipole and its extracellular signature in detailed morphological models of a reconstructed pyramidal neuron. Then, we study the EAP waveform and its spatial dependence in models with axonal AP initiation and contrast it with the EAP obtained in models with somatic AP initiation. We show that in the models with axonal AP initiation the dipole forms between somatodendritic compartments and the AIS, and not between soma and dendrites as in the classical models. Soma-dendrites dipole is present only in models with somatic AP initiation. Our study has consequences for interpreting extracellular recordings of single-neuron activity and determining electrophysiological neuron types, but also for better understanding the origins of the high-frequency macroscopic electric fields recorded in the brain.New & NoteworthyWe studied the consequences of the action potential (AP) initiation site on the extracellular signatures of APs. We show that: (1) at the time of AP initiation the action initial segment (AIS) forms a dipole with the soma, (2) the width but not (3) amplitude of the extracellular AP generated by this dipole increases with the soma-AIS distance. This may help to monitor dynamic changes in the AIS position in experimental in vivo recordings.


2019 ◽  
Vol 400 (9) ◽  
pp. 1141-1146 ◽  
Author(s):  
Amr Abouelezz ◽  
David Micinski ◽  
Aino Lipponen ◽  
Pirta Hotulainen

Abstract The axon initial segment (AIS) comprises a sub-membranous lattice containing periodic actin rings. The overall AIS structure is insensitive to actin-disrupting drugs, but the effects of actin-disrupting drugs on actin rings lack consensus. We examined the effect of latrunculin A and B on the actin cytoskeleton of neurons in culture and actin rings in the AIS. Both latrunculin A and B markedly reduced the overall amount of F-actin in treated neurons in a dose-dependent manner, but the periodicity of actin rings remained unaffected. The insensitivity of AIS actin rings to latrunculin suggests they are relatively stable.


2019 ◽  
pp. jcb.201907048 ◽  
Author(s):  
Tomohiro Torii ◽  
Yuki Ogawa ◽  
Cheng-Hsin Liu ◽  
Tammy Szu-Yu Ho ◽  
Hamdan Hamdan ◽  
...  

Axon initial segments (AISs) initiate action potentials and regulate the trafficking of vesicles between somatodendritic and axonal compartments. However, the mechanisms controlling AIS assembly remain poorly defined. We performed differential proteomics and found nuclear mitotic apparatus protein 1 (NuMA1) is downregulated in AIS-deficient neonatal mouse brains and neurons. NuMA1 is transiently located at the AIS during development where it interacts with the scaffolding protein 4.1B and the dynein regulator lissencephaly 1 (Lis1). Silencing NuMA1 or protein 4.1B by shRNA disrupts AIS assembly, but not maintenance. Silencing Lis1 or overexpressing NuMA1 during AIS assembly increased the density of AIS proteins, including ankyrinG and neurofascin-186 (NF186). NuMA1 inhibits the endocytosis of AIS NF186 by impeding Lis1’s interaction with doublecortin, a potent facilitator of NF186 endocytosis. Our results indicate the transient expression and AIS localization of NuMA1 stabilizes the developing AIS by inhibiting endocytosis and removal of AIS proteins.


Sign in / Sign up

Export Citation Format

Share Document