cerebellar purkinje neurons
Recently Published Documents


TOTAL DOCUMENTS

240
(FIVE YEARS 24)

H-INDEX

49
(FIVE YEARS 2)

2021 ◽  
Vol 118 (45) ◽  
pp. e2024890118
Author(s):  
Shu Ho ◽  
Rebecca Lajaunie ◽  
Marion Lerat ◽  
Mickaël Le ◽  
Valérie Crépel ◽  
...  

Cerebellar Purkinje neurons integrate information transmitted at excitatory synapses formed by granule cells. Although these synapses are considered essential sites for learning, most of them appear not to transmit any detectable electrical information and have been defined as silent. It has been proposed that silent synapses are required to maximize information storage capacity and ensure its reliability, and hence to optimize cerebellar operation. Such optimization is expected to occur once the cerebellar circuitry is in place, during its maturation and the natural and steady improvement of animal agility. We therefore investigated whether the proportion of silent synapses varies over this period, from the third to the sixth postnatal week in mice. Selective expression of a calcium indicator in granule cells enabled quantitative mapping of presynaptic activity, while postsynaptic responses were recorded by patch clamp in acute slices. Through this approach and the assessment of two anatomical features (the distance that separates adjacent planar Purkinje dendritic trees and the synapse density), we determined the average excitatory postsynaptic potential per synapse. Its value was four to eight times smaller than responses from paired recorded detectable connections, consistent with over 70% of synapses being silent. These figures remained remarkably stable across maturation stages. According to the proposed role for silent synapses, our results suggest that information storage capacity and reliability are optimized early during cerebellar maturation. Alternatively, silent synapses may have roles other than adjusting the information storage capacity and reliability.


2021 ◽  
Vol 15 ◽  
Author(s):  
Giulia Quattrocolo ◽  
Keagan Dunville ◽  
Maximiliano José Nigro

In the late ’90, Dr. Indira Raman, at the time a postdoctoral fellow with Dr. Bruce Bean, at Harvard University, identified a new type of sodium current, flowing through the channels that reopens when the membrane is repolarized. This current, called “resurgent Sodium current,” was originally identified in cerebellar Purkinje neurons and has now been confirmed in around 20 different neuronal types. Since moving to Northwestern University in 1999 to establish her own research group, Dr. Raman has dedicated great efforts in identifying the mechanisms supporting the resurgent Sodium current and how its biophysical properties shape the firing of the different cell types. Her work has impacted greatly the field of cellular neurophysiology, from basic research to translation neuroscience. In fact, alterations in the resurgent sodium currents have been observed in several neuropathologies, from Huntington’s disease to epilepsy. In this Perspective we will focus on the current knowledge on the expression and function of the resurgent Sodium current in neurons of the cerebral cortex and hippocampus. We will also briefly highlight the role of Dr. Raman’s as teacher and mentor, not only for her pupils, but for the whole scientific community.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sahana Sitaraman ◽  
Gnaneshwar Yadav ◽  
Vandana Agarwal ◽  
Shaista Jabeen ◽  
Shivangi Verma ◽  
...  

Gap junctions between neurons serve as electrical synapses, in addition to conducting metabolites and signaling molecules. During development, early-appearing gap junctions are thought to prefigure chemical synapses, which appear much later. We present evidence for this idea at a central, glutamatergic synapse and provide some mechanistic insights. Loss or reduction in the levels of the gap junction protein Gjd2b decreased the frequency of glutamatergic miniature excitatory postsynaptic currents (mEPSCs) in cerebellar Purkinje neurons (PNs) in larval zebrafish. Ultrastructural analysis in the molecular layer showed decreased synapse density. Further, mEPSCs had faster kinetics and larger amplitudes in mutant PNs, consistent with their stunted dendritic arbors. Time-lapse microscopy in wild type and mutant PNs reveals that Gjd2b puncta promote the elongation of branches and that CaMKII may be a critical mediator of this process. These results demonstrate that Gjd2b-mediated gap junctions regulate glutamatergic synapse formation and dendritic elaboration in PNs.


Author(s):  
Grant W. Zempolich ◽  
Spencer T. Brown ◽  
Meghana Holla ◽  
Indira M. Raman

Cerebellar Purkinje neurons help compute absolute subsecond timing, but how their firing is affected during repetitive sensory stimulation with consistent subsecond intervals remains unaddressed. Here, we investigated how simple and complex spikes of Purkinje cells change during regular application of air puffs (3.3 Hz for ~4 min) to the whisker pad of awake, head-fixed female mice. Complex spike responses fell into two categories: those in which firing rates increased (at ~50 ms) and then fell (complex spike elevated "CxSE" cells), and those in which firing rates decreased (at ~70 ms) and then rose (complex spike reduced "CxSR" cells). Both groups had indistinguishable rates of basal complex (~1.7 Hz) and simple (~75 Hz) spikes, and initially responded to puffs with a well-timed sensory response of a short-latency (~15 ms), transient (4 ms) suppression of simple spikes. CxSE more than CxSR cells, however, also showed a longer-latency increase in simple spike rate, previously shown to reflect motor command signals. With repeated puffs, basal simple spike rates dropped greatly in CxSR but not CxSE cells; complex spike rates remained constant, but their temporal precision rose in CxSR cells and fell in CxSE cells. Also over time, transient simple spike suppression gradually disappeared in CxSE cells, suggesting habituation, but remained stable in CxSR cells, suggesting reliable transmission of sensory stimuli. During stimulus omissions, both categories of cells showed complex spike suppression with different latencies. The data indicate two modes by which Purkinje cells transmit regular repetitive stimuli, distinguishable by their climbing fiber signals.


2021 ◽  
Author(s):  
Joseph L. Ransdell ◽  
Jonathan D. Moreno ◽  
Druv Bhagavan ◽  
Jonathan R. Silva ◽  
Jeanne M. Nerbonne

ABSTRACTThe resurgent component of the voltage-gated sodium current (INaR) is a depolarizing conductance, revealed on membrane hyperpolarizations following brief depolarizing voltage steps, which has been shown to contribute to regulating the firing properties of numerous neuronal cell types throughout the central and peripheral nervous systems. Although mediated by the same voltage-gated sodium (Nav) channels that underlie the transient and persistent Nav current components, the gating mechanisms that contribute to the generation of INaR remain unclear. Here, we characterized Nav currents in mouse cerebellar Purkinje neurons, and used tailored voltage-clamp protocols to define how the voltage and the duration of the initial membrane depolarization affect the amplitudes and kinetics of INaR. Using the acquired voltage-clamp data, we developed a novel Markov kinetic state model with parallel (fast and slow) inactivation pathways and, we show that this model reproduces the properties of the resurgent, as well as the transient and persistent, Nav currents recorded in (mouse) cerebellar Purkinje neurons. Based on the acquired experimental data and the simulations, we propose that resurgent Na+ influx occurs as a result of fast inactivating Nav channels transitioning into an open/conducting state on membrane hyperpolarization, and that the decay of INaR reflects the slow accumulation of recovered/opened Nav channels into a second, alternative and more slowly populated, inactivated state. Additional simulations reveal that extrinsic factors that affect the kinetics of fast or slow Nav channel inactivation and/or impact the relative distribution of Nav channels in the fast- and slow-inactivated states, such as the accessory Navβ4 channel subunit, can modulate the amplitude of INaR.SUMMARYThe resurgent component of the voltage-gated sodium current (INaR) is revealed on membrane hyperpolarizations following brief depolarizing voltage steps that activate the rapidly activating and inactivating, transient Nav current (INaT). To probe the mechanisms contributing to the generation and properties of INaR, we combined whole-cell voltage-clamp recordings from mouse cerebellar Purkinje neurons with computational modeling to develop a novel, blocking particle-independent, model for the gating of INaR that involves two parallel inactivation pathways, and we show that this model recapitulates the detailed biophysical properties of INaR measured in mouse cerebellar Purkinje neurons.


2021 ◽  
Author(s):  
Emily A.L. Wozniak ◽  
Zhao Chen ◽  
Sharan Paul ◽  
Praseuth Yang ◽  
Karla P. Figueroa ◽  
...  

SUMMARYSpinocerebellar Ataxias (SCAs) are a group of genetic diseases characterized by progressive ataxia and neurodegeneration, often in cerebellar Purkinje neurons. A SCA1 mouse model, Pcp2-ATXN1[30Q]D776, has severe ataxia in absence of progressive Purkinje neuron degeneration and death. Previous RNA-seq analyses identified cerebellar up-regulation of the peptide hormone Cholecystokinin (Cck) in Pcp2-ATXN1[30Q]D776 mice. Importantly, absence of Cck1 receptor (Cck1R) in Pcp2-ATXN1[30Q]D776 mice confers a progressive disease with Purkinje neuron death. A Cck1R agonist, A71623 administered to Pcp2-ATXN1[30Q]D776;Cck-/- and Pcp2-AXTN1[82Q] mice dampened Purkinje neuron pathology and associated deficits in motor performance. In addition, A71623 administration improved motor performance of Pcp2-ATXN2[127Q] SCA2 mice. Moreover, the Cck1R agonist A71623 corrected mTORC1 signaling and improved expression of calbindin in cerebella of AXTN1[82Q] and ATXN2[127Q] mice. These results indicate that manipulation of the Cck-Cck1R pathway is a potential therapeutic target for treatment of diseases involving Purkinje neuron degeneration.


Biology Open ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. bio054734
Author(s):  
Simona Sacchini ◽  
Josué Díaz-Delgado ◽  
Antonio Espinosa de los Monteros ◽  
Yania Paz ◽  
Yara Bernaldo de Quirós ◽  
...  

ABSTRACTHypoxia could be a possible risk factor for neurodegenerative alterations in cetaceans’ brain. Among toothed whales, the beaked whales are particularly cryptic and routinely dive deeper than 1000 m for about 1 h in order to hunt squids and fishes. Samples of frontal cerebral and cerebellar cortex were collected from nine animals, representing six different species of the suborder Odontoceti. Immunohistochemical analysis employed anti-β-amyloid (Aβ) and anti-neurofibrillary tangle (NFT) antibodies. Six of nine (67%) animals showed positive immunolabeling for Aβ and/or NFT. The most striking findings were intranuclear Aβ immunopositivity in cerebral cortical neurons and NFT immunopositivity in cerebellar Purkinje neurons with granulovacuolar degeneration. Aβ plaques were also observed in one elderly animal. Herein, we present immunohistopathological findings classic of Alzheimer's and other neurodegenerative diseases in humans. Our findings could be linked to hypoxic phenomena, as they were more extensive in beaked whales. Despite their adaptations, cetaceans could be vulnerable to sustained and repetitive brain hypoxia.


Sign in / Sign up

Export Citation Format

Share Document