scholarly journals scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R

2016 ◽  
Author(s):  
Davis J. McCarthy ◽  
Kieran R. Campbell ◽  
Aaron T. L. Lun ◽  
Quin F. Wills

AbstractMotivationSingle-cell RNA sequencing (scRNA-seq) is increasingly used to study gene expression at the level of individual cells. However, preparing raw sequence data for further analysis is not a straightforward process. Biases, artifacts, and other sources of unwanted variation are present in the data, requiring substantial time and effort to be spent on pre-processing, quality control (QC) and normalisation.ResultsWe have developed the R/Bioconductor package scater to facilitate rigorous pre-processing, quality control, normalisation and visualisation of scRNA-seq data. The package provides a convenient, flexible workflow to process raw sequencing reads into a high-quality expression dataset ready for downstream analysis. scater provides a rich suite of plotting tools for single-cell data and a flexible data structure that is compatible with existing tools and can be used as infrastructure for future software development.AvailabilityThe open-source code, along with installation instructions, vignettes and case studies, is available through Bioconductor at http://bioconductor.org/packages/scater.Supplementary informationSupplementary material is available online at bioRxiv accompanying this manuscript, and all materials required to reproduce the results presented in this paper are available at dx.doi.org/10.5281/zenodo.60139.

2019 ◽  
Vol 36 (6) ◽  
pp. 1779-1784 ◽  
Author(s):  
Chuanqi Wang ◽  
Jun Li

Abstract Motivation Scaling by sequencing depth is usually the first step of analysis of bulk or single-cell RNA-seq data, but estimating sequencing depth accurately can be difficult, especially for single-cell data, risking the validity of downstream analysis. It is thus of interest to eliminate the use of sequencing depth and analyze the original count data directly. Results We call an analysis method ‘scale-invariant’ (SI) if it gives the same result under different estimates of sequencing depth and hence can use the original count data without scaling. For the problem of classifying samples into pre-specified classes, such as normal versus cancerous, we develop a deep-neural-network based SI classifier named scale-invariant deep neural-network classifier (SINC). On nine bulk and single-cell datasets, the classification accuracy of SINC is better than or competitive to the best of eight other classifiers. SINC is easier to use and more reliable on data where proper sequencing depth is hard to determine. Availability and implementation This source code of SINC is available at https://www.nd.edu/∼jli9/SINC.zip. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Author(s):  
Martin Pirkl ◽  
Niko Beerenwinkel

AbstractMotivationNew technologies allow for the elaborate measurement of different traits of single cells. These data promise to elucidate intra-cellular networks in unprecedented detail and further help to improve treatment of diseases like cancer. However, cell populations can be very heterogeneous.ResultsWe developed a mixture of Nested Effects Models (M&NEM) for single-cell data to simultaneously identify different cellular sub-populations and their corresponding causal networks to explain the heterogeneity in a cell population. For inference, we assign each cell to a network with a certain probability and iteratively update the optimal networks and cell probabilities in an Expectation Maximization scheme. We validate our method in the controlled setting of a simulation study and apply it to three data sets of pooled CRISPR screens generated previously by two novel experimental techniques, namely Crop-Seq and Perturb-Seq.AvailabilityThe mixture Nested Effects Model (M&NEM) is available as the R-package mnem at https://github.com/cbgethz/mnem/[email protected], [email protected] informationSupplementary data are available.online.


2017 ◽  
pp. btw777 ◽  
Author(s):  
Davis J. McCarthy ◽  
Kieran R. Campbell ◽  
Aaron T. L. Lun ◽  
Quin F. Wills

2017 ◽  
Author(s):  
Bo Wang ◽  
Daniele Ramazzotti ◽  
Luca De Sano ◽  
Junjie Zhu ◽  
Emma Pierson ◽  
...  

AbstractMotivationWe here present SIMLR (Single-cell Interpretation via Multi-kernel LeaRning), an open-source tool that implements a novel framework to learn a cell-to-cell similarity measure from single-cell RNA-seq data. SIMLR can be effectively used to perform tasks such as dimension reduction, clustering, and visualization of heterogeneous populations of cells. SIMLR was benchmarked against state-of-the-art methods for these three tasks on several public datasets, showing it to be scalable and capable of greatly improving clustering performance, as well as providing valuable insights by making the data more interpretable via better a visualization.Availability and ImplementationSIMLR is available on GitHub in both R and MATLAB implementations. Furthermore, it is also available as an R package on [email protected] or [email protected] InformationSupplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Snehalika Lall ◽  
Abhik Ghosh ◽  
Sumanta Ray ◽  
Sanghamitra Bandyopadhyay

Abstract Annotation of cells in single-cell clustering requires a homogeneous grouping of cell populations. Since single cell data is susceptible to technical noise, the quality of genes selected prior to clustering is of crucial importance in the preliminary steps of downstream analysis. Therefore, interest in robust gene selection has gained considerable attention in recent years. We introduce sc-REnF, (robust entropy based feature (gene) selection method), aiming to leverage the advantages of Rényi and Tsallis> entropies in gene selection for single cell clustering. Experiments demonstrate that with tuned parameter (q), Rényi and Tsallis entropies select genes that improved the clustering results significantly, over the other competing methods. sc-REnF can capture relevancy and redundancy among the features of noisy data extremely well due to its robust objective function. Moreover, the selected features/genes can able to clusters the unknown cells with a high accuracy. Finally, sc-REnF yields good clustering performance in small sample, large feature scRNA-seq data.


2019 ◽  
Author(s):  
Magdalena E Strauss ◽  
Paul D W Kirk ◽  
John E Reid ◽  
Lorenz Wernisch

Abstract Motivation Many methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or microarray data. However, single-cell data may present a particular challenge for these algorithms, since the temporal ordering of cells is not directly observed. One way to address this is to first use pseudotime methods to order the cells, and then apply clustering techniques for time course data. However, pseudotime estimates are subject to high levels of uncertainty, and failing to account for this uncertainty is liable to lead to erroneous and/or over-confident gene clusters. Results The proposed method, GPseudoClust, is a novel approach that jointly infers pseudotemporal ordering and gene clusters, and quantifies the uncertainty in both. GPseudoClust combines a recent method for pseudotime inference with nonparametric Bayesian clustering methods, efficient MCMC sampling, and novel subsampling strategies which aid computation.We consider a broad array of simulated and experimental datasets to demonstrate the effectiveness of GPseudoClust in a range of settings. Availability An implementation is available on GitHub: https://github.com/magStra/nonparametricSummaryPSM and https://github.com/magStra/GPseudoClust. Supplementary Information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 35 (15) ◽  
pp. 2602-2609 ◽  
Author(s):  
Jie Hao ◽  
Wei Cao ◽  
Jian Huang ◽  
Xin Zou ◽  
Ze-Guang Han

Abstract Motivation Single-cell transcriptomic data are commonly accompanied by extremely high technical noise due to the low RNA concentrations from individual cells. Precise identification of differentially expressed genes and cell populations are heavily dependent on the effective reduction of technical noise, e.g. by gene filtering. However, there is still no well-established standard in the current approaches of gene filtering. Investigators usually filter out genes based on single fixed threshold, which commonly leads to both over- and under-stringent errors. Results In this study, we propose a novel algorithm, termed as Optimal Gene Filtering for Single-Cell data, to construct a thresholding curve based on gene expression levels and the corresponding variances. We validated our method on multiple single-cell RNA-seq datasets, including simulated and published experimental datasets. The results show that the known signal and known noise are reliably discriminated in the simulated datasets. In addition, the results of seven experimental datasets demonstrate that these cells of the same annotated types are more sharply clustered using our method. Interestingly, when we re-analyze the dataset from an aging research recently published in Science, we find a list of regulated genes which is different from that reported in the original study, because of using different filtering methods. However, the knowledge based on our findings better matches the progression of immunosenescence. In summary, we here provide an alternative opportunity to probe into the true level of technical noise in single-cell transcriptomic data. Availability and implementation https://github.com/XZouProjects/OGFSC.git Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (22) ◽  
pp. 4757-4759 ◽  
Author(s):  
Vivek Bhardwaj ◽  
Steffen Heyne ◽  
Katarzyna Sikora ◽  
Leily Rabbani ◽  
Michael Rauer ◽  
...  

Abstract Summary Due to the rapidly increasing scale and diversity of epigenomic data, modular and scalable analysis workflows are of wide interest. Here we present snakePipes, a workflow package for processing and downstream analysis of data from common epigenomic assays: ChIP-seq, RNA-seq, Bisulfite-seq, ATAC-seq, Hi-C and single-cell RNA-seq. snakePipes enables users to assemble variants of each workflow and to easily install and upgrade the underlying tools, via its simple command-line wrappers and yaml files. Availability and implementation snakePipes can be installed via conda: `conda install -c mpi-ie -c bioconda -c conda-forge snakePipes’. Source code (https://github.com/maxplanck-ie/snakepipes) and documentation (https://snakepipes.readthedocs.io/en/latest/) are available online. Supplementary information Supplementary data are available at Bioinformatics online.


2017 ◽  
Author(s):  
Anne Senabouth ◽  
Samuel W Lukowski ◽  
Jose Alquicira Hernandez ◽  
Stacey Andersen ◽  
Xin Mei ◽  
...  

AbstractSummaryascend is an R package comprised of fast, streamlined analysis functions optimized to address the statistical challenges of single cell RNA-seq. The package incorporates novel and established methods to provide a flexible framework to perform filtering, quality control, normalization, dimension reduction, clustering, differential expression and a wide-range of plotting. ascend is designed to work with scRNA-seq data generated by any high-throughput platform, and includes functions to convert data objects between software packages.AvailabilityThe R package and associated vignettes are freely available at https://github.com/IMB-Computational-Genomics-Lab/[email protected] informationAn example dataset is available at ArrayExpress, accession number E-MTAB-6108


2020 ◽  
Author(s):  
Vu VH Pham ◽  
Xiaomei Li ◽  
Buu Truong ◽  
Thin Nguyen ◽  
Lin Liu ◽  
...  

AbstractMotivationPredicting cell locations is important since with the understanding of cell locations, we may estimate the function of cells and their integration with the spatial environment. Thus, the DREAM Challenge on Single Cell Transcriptomics required participants to predict the locations of single cells in the Drosophila embryo using single cell transcriptomic data.ResultsWe have developed over 50 pipelines by combining different ways of pre-processing the RNA-seq data, selecting the genes, predicting the cell locations, and validating predicted cell locations, resulting in the winning methods for two out of three sub-challenges in the competition. In this paper, we present an R package, SCTCwhatateam, which includes all the methods we developed and the Shiny web-application to facilitate the research on single cell spatial reconstruction. All the data and the example use cases are available in the Supplementary material.AvailabilityThe scripts of the package are available at https://github.com/thanhbuu04/SCTCwhatateam and the Shiny application is available at https://github.com/pvvhoang/[email protected] informationSupplementary data are available at Briefings in Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document