scholarly journals The spectral features of EEG responses to transcranial magnetic stimulation of the primary motor cortex depend on the amplitude of the motor evoked potentials

2017 ◽  
Author(s):  
Matteo Fecchio ◽  
Andrea Pigorini ◽  
Angela Comanducci ◽  
Simone Sarasso ◽  
Silvia Casarotto ◽  
...  

ABSTRACTTranscranial magnetic stimulation (TMS) of the primary motor cortex (M1) can excite both cortico-cortical and cortico-spinal axons resulting in TMS-evoked potentials (TEPs) and motor-evoked potentials (MEPs), respectively. Despite this remarkable difference with other cortical areas, the influence of motor output and its amplitude on TEPs is largely unknown. Here we studied TEPs resulting from M1 stimulation and assessed whether their waveform and spectral features depend on the MEP amplitude. To this aim, we performed two separate experiments. In experiment 1, single-pulse TMS was applied at the same supra-threshold intensity on primary motor, prefrontal, premotor and parietal cortices and the corresponding TEPs were compared by means of local mean field power and time-frequency spectral analysis. In experiment 2 we stimulated M1 at resting motor threshold in order to elicit MEPs characterized by a wide range of amplitudes. TEPs computed from high-MEP and low-MEP trials were then compared using the same methods applied in experiment 1. In line with previous studies, TMS of M1 produced larger TEPs compared to other cortical stimulations. Notably, we found that only TEPs produced by M1 stimulation were accompanied by a late (∼300 ms after TMS) event-related desynchronization (ERD), whose magnitude was strongly dependent on the amplitude of MEPs. Overall, these results suggest that M1 produces peculiar responses to TMS possibly reflecting specific anatomo-functional properties, such as the re-entry of proprioceptive feedback associated with target muscle activation.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yi Yang ◽  
Ines Eisner ◽  
Siqi Chen ◽  
Shaosong Wang ◽  
Fan Zhang ◽  
...  

While neuroplasticity changes measured by transcranial magnetic stimulation have been proved to be highly correlated to motor recovery and have been tested in various forms of interventions, it has not been applied to investigate the neurophysiologic mechanism of acupuncture therapy. The aim of this study is to investigate neuroplasticity changes induced by a single session of acupuncture therapy in healthy adults, regarding the excitability change on bilateral primary motor cortex and interhemispheric inhibition. Ten subjects took a 30-minute acupuncture therapy and the same length relaxing phase in separate days. Transcranial magnetic stimulation measures, including resting motor threshold, amplitudes of motor-evoked potential, and interhemispheric inhibition, were assessed before and 10 minutes after intervention. Acupuncture treatment showed significant changes on potential amplitude from both ipsilateral and contralateral hemispheres to acupuncture compared to baseline. Also, interhemispheric inhibition from the contralateral motor cortex to the opposite showed a significant decline. The results indicated that corticomotoneuronal excitability and interhemispheric competition could be modulated by acupuncture therapy on healthy subjects. The following question about whether these changes will be observed in the same way on stroke patients and whether they correlate with the therapeutic effect on movement need to be answered by following studies. This trial is registered with ISRCTN13074245.


2019 ◽  
Vol 9 (8) ◽  
pp. 177 ◽  
Author(s):  
Matt J.N. Brown ◽  
Elana R. Goldenkoff ◽  
Robert Chen ◽  
Carolyn Gunraj ◽  
Michael Vesia

Dual-site transcranial magnetic stimulation to the primary motor cortex (M1) and dorsolateral prefrontal cortex (DLPFC) can be used to probe functional connectivity between these regions. The purpose of this study was to characterize the effect of DLPFC stimulation on ipsilateral M1 excitability while participants were at rest and contracting the left- and right-hand first dorsal interosseous muscle. Twelve participants were tested in two separate sessions at varying inter-stimulus intervals (ISI: 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, and 20 ms) at two different conditioning stimulus intensities (80% and 120% of resting motor threshold). No significant effect on ipsilateral M1 excitability was found when applying a conditioning stimulus over DLPFC at any specific inter-stimulus interval or intensity in either the left or right hemisphere. Our findings suggest neither causal inhibitory nor faciliatory influences of DLPFC on ipsilateral M1 activity while participants were at rest or when performing an isometric contraction in the target hand muscle.


2021 ◽  
Author(s):  
Antonio Capozio ◽  
Samit Chakrabarty ◽  
Sarah Astill

AbstractThe amplitude of motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the motor cortex is influenced by multiple factors. TMS delivery is accompanied by an abrupt clicking noise which can induce a startle response. This study investigated how masking/attenuating the sound produced by the TMS system discharging influences MEP amplitudes. In addition, the effects of increasing the time between consecutive stimuli and of making participants aware of the time at which they would be stimulated were studied. MEPs were recorded from the Flexor Carpi Radialis (FCR) muscle at rest by stimulation at motor threshold (MT), 120% MT and 140% MT intensity. Participants (N = 23) received stimulation under normal (NORMAL) conditions and while: wearing sound-attenuating earmuffs (EAR); listening to white noise (NOISE); the interval between stimuli were prolonged (LONG); stimulation timing was presented on a screen (READY). The results showed that masking (p = 0.020) and attenuating (p = 0.004) the incoming sound significantly reduced the amplitude of MEPs recorded across the intensities of stimulation. Increasing the interval between pulses had no effect on the recorded traces if a jitter was introduced (p = 1), but making participants aware of stimulation timing decreased MEP amplitudes (p = 0.049). These findings suggest that the sound produced by TMS at discharging increases MEP amplitudes and that MEP amplitudes are influenced by stimulus expectation. These confounding factors need to be considered when using TMS to assess corticospinal excitability.


2005 ◽  
Vol 94 (3) ◽  
pp. 1668-1675 ◽  
Author(s):  
Pramod Kr. Pal ◽  
Ritsuko Hanajima ◽  
Carolyn A. Gunraj ◽  
Jie-Yuan Li ◽  
Aparna Wagle-Shukla ◽  
...  

We studied the effects of 1-Hz repetitive transcranial magnetic stimulation (rTMS) on the excitability of interhemispheric connections in 13 right-handed healthy volunteers. TMS was performed using figure-eight coils, and surface electromyography (EMG) was recorded from both first dorsal interosseous (FDI) muscles. A paired-pulse method with a conditioning stimulus (CS) to the motor cortex (M1) followed by a test stimulus to the opposite M1 was used to study the interhemispheric inhibition (ppIHI). Both CS and TS were adjusted to produce motor-evoked potentials of ∼1 mV in the contralateral FDI muscles. After baseline measurement of right-to-left IHI (pre-RIHI) and left-to-right IHI (pre-LIHI), rTMS was applied over left M1 at 1 Hz with 900 stimuli at 115% of resting motor threshold. After rTMS, ppIHI was studied using both the pre-rTMS CS (post-RIHI and post-LIHI) and an adjusted post-rTMS CS set to produce 1-mV motor evoked potentials (MEPs; post-RIHIadj and post-LIHIadj). The TS was set to produce 1-mV MEPs. There was a significant reduction in post-LIHI ( P = 0.0049) and post-LIHIadj ( P = 0.0169) compared with pre-LIHI at both interstimulus intervals of 10 and 40 ms. Post-RIHI was significantly reduced compared with pre-RIHI ( P = 0.0015) but pre-RIHI and post-RIHIadj were not significantly different. We conclude that 1-Hz rTMS reduces IHI in both directions but is predominantly from the stimulated to the unstimulated hemisphere. Low-frequency rTMS may be used to modulate the excitability of IHI circuits. Treatment protocols using low-frequency rTMS to reduce cortical excitability in neurological and psychiatric conditions need to take into account their effects on IHI.


2016 ◽  
Vol 03 (01) ◽  
pp. 002-006
Author(s):  
Lara Schrader ◽  
Sima Sadeghinejad ◽  
Jalleh Sadeghinejad ◽  
Movses Kazanchyan ◽  
Lisa Koski ◽  
...  

Abstract Background/objectives Optimal low frequency repetitive transcranial magnetic stimulation (LF-rTMS) parameters for treating epilepsy and other brain disorders are unknown. To address this question, a systematic study of the effects of LF-rTMS frequency and intensity on cortical excitability was performed. Methods Using a four-period crossover design, subjects were scheduled for four LF-rTMS sessions that were at least four weeks apart. LF-rTMS was delivered as 900 pulses directed at primary motor cortex using four protocols: 0.5 Hz at 90% resting motor threshold (RMT), 0.5 Hz at 110% RMT, 1 Hz at 90% RMT, and 1 Hz at 110% RMT. Motor evoked potential (MEP) amplitude, resting motor threshold (RMT), and cortical silent period (CSP) were measured before, immediately after, and 60 min after LF-rTMS. Each of the four protocols was analyzed separately to compare baseline measurements to those after LF-rTMS. Results None of the four LF-rTMS protocols produced a trend or significant change in MEP amplitude, RMT, or CSP. Conclusion The lack of significant effect from the four LF-rTMS protocols indicates that none produced evidence for alteration of cortical excitability. The direct comparison of four LF-rTMS protocols is distinct to this investigation, as most similar studies were exploratory and studied only one or two protocols. The negative result relates only to the methods used in this investigation and does not indicate that LF-rTMS does not alter cortical excitability with other parameters. These results may be useful when designing additional investigations into the effect of LF-rTMS on epilepsy, other disorders, and cortical excitability.


Neurosurgery ◽  
2015 ◽  
Vol 77 (3) ◽  
pp. 394-405 ◽  
Author(s):  
Laura Säisänen ◽  
Petro Julkunen ◽  
Samuli Kemppainen ◽  
Nils Danner ◽  
Arto Immonen ◽  
...  

Abstract BACKGROUND: Navigated transcranial magnetic stimulation (nTMS) has become established as an accurate noninvasive technique for mapping the functional motor cortex for the representation areas of upper and lower limb muscles but not yet for facial musculature. OBJECTIVE: To characterize the applicability and clinical impact of using nTMS to map cortical motor areas of facial muscles in healthy volunteers and neurosurgical tumor patients. METHODS: Eight healthy volunteers and 12 patients with tumor were studied. The motor threshold (MT) was determined for the abductor pollicis brevis and mentalis muscles. The lateral part of the motor cortex was mapped with suprathreshold stimulation intensity, and motor evoked potentials were recorded from several facial muscles. The patient protocol was modified according to the clinical indication. RESULTS: In all healthy subjects, motor evoked potentials were elicited in the mentalis (mean latency, 13.4 milliseconds) and orbicularis oris (mean latency, 12.6 milliseconds) muscles. At 110% of MT of the mentalis, the motor evoked potentials of facial muscles were elicited mainly in the precentral gyrus but also from one gyrus anterior and posterior to it. The cortical areas applicable for mapping were limited by an artifact attributable to direct peripheral nerve stimulation. The mapping protocol was successful in 10 of 12 tumor patients at locating the representation area of the lower facial muscles. The MT of the facial muscles was significantly higher than that of the abductor pollicis brevis. CONCLUSION: nTMS is an applicable and clinically beneficial noninvasive method to preoperatively map the cortical representation areas of the facial muscles in the lower part of the face. Instead of using the MT of the abductor pollicis brevis, the stimulus intensity during mapping should be proportioned to the MT of a facial muscle.


2010 ◽  
Vol 108 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Mathieu Raux ◽  
Haiqun Xie ◽  
Thomas Similowski ◽  
Lisa Koski

Inspiratory loading in awake humans is associated with electroencephalographic signs of supplementary motor area (SMA) activation. To provide evidence for a functional connection between SMA and the diaphragm representation in the primary motor cortex (M1DIA), we tested the hypothesis that modulating SMA activity using repetitive transcranial magnetic stimulation (rTMS) would alter M1DIA excitability. Amplitude and latency of diaphragm motor evoked potentials (MEPDIA), evoked through single pulse M1DIA stimulation, before and up to 16 min after SMA stimulation, were taken as indicators of M1DIA excitability. MEPs from the first dorsal interosseous muscle (FDI, MEPFDI) served as a control. Four SMA conditioning sessions were performed in random order at 1-wk intervals. Two aimed at increasing SMA activity (5 and 10 Hz, both at 110% of FDI active motor threshold; referred to as 5Hz and 10Hz, respectively), and two aimed at decreasing it (1 Hz either at 110% of FDI active or resting motor threshold, referred to as aMT or rMT, respectively). The 5Hz protocol increased MEPDIA and MEPFDI amplitudes with a maximum 11–16 min poststimulation ( P = 0.04 and P = 0.02, respectively). The 10Hz protocol increased MEPFDI amplitude with a similar time course ( P = 0.03) but did not increase MEPDIA amplitude ( P = 0.32). Both aMT and rMT failed to decrease MEPDIA or MEPFDI amplitudes ( P = 0.23 and P = 0.90, respectively, for diaphragm and P = 0.48 and P = 0.14 for FDI). MEPDIA and MEPFDI latencies were unaffected by rTMS. These results demonstrate that 5-Hz rTMS over the SMA can increase the excitability of M1DIA. These observations are consistent with the hypothesis of a functional connection between SMA and M1DIA.


Sign in / Sign up

Export Citation Format

Share Document