scholarly journals An oomycete effector protein induces shade avoidance in Arabidopsis and attenuates salicylate signaling by binding to host proteins of the RADICAL-INDUCED CELL DEATH1 family

2017 ◽  
Author(s):  
Lennart Wirthmueller ◽  
Shuta Asai ◽  
Ghanasyam Rallapalli ◽  
Jan Sklenar ◽  
Georgina Fabro ◽  
...  

AbstractThe oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) causes downy mildew disease on Arabidopsis. During infection, Hpa like other biotrophic pathogens, suppresses activation of plant innate immunity by translocating effector proteins into host cells. Some of these effectors localize to the host cell nucleus where they may manipulate transcriptional reprogramming of plant defense genes. Here we report that the nuclear-localized Hpa effector HaRxL106, when expressed in Arabidopsis, induces shade avoidance and attenuates the transcriptional response to the defense signaling molecule salicylic acid. HaRxL106 interacts with RADICAL-INDUCED CELL DEATH1 (RCD1) and loss of RCD1 function renders Arabidopsis resilient against HaRxL106-mediated suppression of immunity. To further characterize the molecular functions of RCD1 we solved a crystal structure of RCD1’s Poly-(ADP-ribose)-Polymerase (PARP) domain and, based on non-conservation of amino acids constituting the active site of canonical PARPs, conclude that RCD1 has no PARP activity. We report that RCD1-type proteins are phosphorylated and identified histone-modifying Mut9-like kinases (MLKs) as RCD1-interacting proteins. A mlk1,3,4 triple mutant exhibits stronger SA-induced defense marker gene expression compared to wild-type plants. Our data suggest that HaRxL106 suppresses Arabidopsis innate immunity by manipulating the function(s) of RCD1 in the host cell nucleus and point towards a role of RCD1 as a transcriptional co-regulator that integrates signals from light and pathogen sensors.

1963 ◽  
Vol 19 (3) ◽  
pp. 453-466 ◽  
Author(s):  
Thomas J. Byers ◽  
Dorothy B. Platt ◽  
Lester Goldstein

Autoradiographs of whole Amoeba proteus host cells fixed after the implantation of single nuclei from A. proteus donors labeled with any one of 8 different radioactive amino acids showed that the label had become highly concentrated in the host cell nucleus as well as in the donor nucleus and that the cytoplasmic activity was relatively low. When these amebae were sectioned, the radioactivity was found to be homogeneously distributed throughout the nuclei. The effect of unlabeled amino acid "chaser," the solubility of the labeled material, and the long-term behavior of the labeled material gave evidence that the radioactivity was in protein. At equilibrium, the host cell nucleus contained approximately 30 per cent of the radioactivity distributed between the two nuclei. This unequal nuclear distribution is attributed to the presence of two classes of nuclear proteins: a non-migratory one that does not leave the nucleus during interphase, and a migratory one, called cytonucleoprotein, that shuttles between nucleus and cytoplasm in a non-random manner. It is estimated that between 12 per cent and 44 per cent of the cytonucleoproteins are present in the cytoplasm of a binucleate cell at any one moment. Nuclei of Chaos chaos host cells also concentrated label acquired from implanted radioactive A. proteus nuclei.


2014 ◽  
Vol 70 (a1) ◽  
pp. C826-C826
Author(s):  
Abbas Maqbool ◽  
Richard Richard ◽  
Tolga Bozkurt ◽  
Yasin Dagdas ◽  
Khaoula Belhai ◽  
...  

Autophagy is a catabolic process involving degradation of dysfunctional cytoplasmic components to ensure cellular survival under starvation conditions. The process involves formation of double-membrane vesicles called autophagosomes and delivery of the inner constituents to lytic compartments. It can also target invading pathogens, such as intracellular bacteria, for destruction and is thus implicated in innate immune pathways [1]. In response, certain mammalian pathogens deliver effector proteins into host cells that inhibit autophagy and contribute to enabling parasitic infection [2]. Pyhtophthora infestans, the Irish potato famine pathogen, is a causative agent of late blight disease in potato and tomato crops. It delivers a plethora of modular effector proteins into plant cells to promote infection. Once inside the cell, RXLR-type effector proteins engage with host cell proteins, to manipulate host cell physiology for the benefit of the pathogen. As plants lack an adaptive immune system, this provides a robust mechanism for pathogens to circumvent host defense. PexRD54 is an intracellular RXLR-type effector protein produced by P. infestans. PexRD54 interacts with potato homologues of autophagy protein ATG8 in plant cells. We have been investigating the structural and biochemical basis of the PexRD54/ATG8 interaction in vitro. We have purified PexRD54 and ATG8 independently and in complex from E. coli. Using protein/protein interaction studies we have shown that PexRD54 binds ATG8 with sub-micromolar affinity. We have also determined the structure of PexRD54 in the presence of ATG8. This crystal structure provides key insights into how the previously reported WY-fold of oomycete RXLR-type effectors [3] can be organized in multiple repeats. The structural data also provides insights into the interaction between PexRD54 and ATG8, suggesting further experiments to understand the impact of this interaction on host cell physiology and how this benefits the pathogen.


Planta ◽  
1984 ◽  
Vol 162 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Dietrich Werner ◽  
Erhard M�rschel ◽  
Renate Kort ◽  
Robert B. Mellor ◽  
Stephan Bassarab

2017 ◽  
Vol 38 (3) ◽  
pp. 112
Author(s):  
Joshua PM Newson

The bacterium Salmonella causes a spectrum of foodborne diseases ranging from acute gastroenteritis to systemic infections, and represents a significant burden of disease globally. In Australia, Salmonella is frequently associated with outbreaks and is a leading cause of foodborne illness, which results in a significant medical and economic burden. Salmonella infection involves colonisation of the small intestine, where the bacteria invades host cells and establishes an intracellular infection. To survive within host cells, Salmonella employs type-three secretion systems to deliver bacterial effector proteins into the cytoplasm of host cells. These bacterial effectors seek out and modify specific host proteins, disrupting host processes such as cell signalling, intracellular trafficking, and programmed cell death. This strategy of impairing host cells allows Salmonella to establish a replicative niche within the cell, where they can replicate to high numbers before escaping to infect neighbouring cells, or be transmitted to new hosts. While the importance of effector protein translocation to infection is well established, our understanding of many effector proteins remains incomplete. Many Salmonella effectors have unknown function and unknown roles during infection. A greater understanding of how Salmonella manipulates host cells during infection will lead to improved strategies to prevent, control, and eliminate disease. Further, studying effector proteins can be a useful means for exploring host cell biology and elucidating the details of host cell signalling.


2020 ◽  
Vol 8 (3) ◽  
pp. 389 ◽  
Author(s):  
Prabhat K. Talukdar ◽  
Nicholas M. Negretti ◽  
Kyrah L. Turner ◽  
Michael E. Konkel

Campylobacter jejuni, a zoonotic pathogen that frequently colonizes poultry, possesses two Microbial Surface Components Recognizing Adhesive Matrix Molecule(s) (MSCRAMMs) termed CadF and FlpA that bind to the glycoprotein fibronectin (FN). Previous to this study, it was not known whether the CadF and FlpA proteins were functionally redundant or if both were required to potentiate host cell binding and signaling processes. We addressed these questions by generating a complete repertoire of cadF and flpA mutants and complemented isolates, and performing multiple phenotypic assays. Both CadF and FlpA were found to be necessary for the maximal binding of C. jejuni to FN and to host cells. In addition, both CadF and FlpA are required for the delivery of the C. jejuni Cia effector proteins into the cytosol of host target cells, which in turn activates the MAPK signaling pathway (Erk 1/2) that is required for the C. jejuni invasion of host cells. These data demonstrate the non-redundant and bi-functional nature of these two C. jejuni FN-binding proteins. Taken together, the C. jejuni CadF and FlpA adhesins facilitate the binding of C. jejuni to the host cells, permit delivery of effector proteins into the cytosol of a host target cell, and aid in the rewiring of host cell signaling pathways to alter host cell behavior.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
A. Leoni Swart ◽  
Bernhard Steiner ◽  
Laura Gomez-Valero ◽  
Sabina Schütz ◽  
Mandy Hannemann ◽  
...  

ABSTRACT Legionella pneumophila governs its interactions with host cells by secreting >300 different “effector” proteins. Some of these effectors contain eukaryotic domains such as the RCC1 (regulator of chromosome condensation 1) repeats promoting the activation of the small GTPase Ran. In this report, we reveal a conserved pattern of L. pneumophila RCC1 repeat genes, which are distributed in two main clusters of strains. Accordingly, strain Philadelphia-1 contains two RCC1 genes implicated in bacterial virulence, legG1 (Legionella eukaryotic gene 1), and ppgA, while strain Paris contains only one, pieG. The RCC1 repeat effectors localize to different cellular compartments and bind distinct components of the Ran GTPase cycle, including Ran modulators and the small GTPase itself, and yet they all promote the activation of Ran. The pieG gene spans the corresponding open reading frames of legG1 and a separate adjacent upstream gene, lpg1975. legG1 and lpg1975 are fused upon addition of a single nucleotide to encode a protein that adopts the binding specificity of PieG. Thus, a point mutation in pieG splits the gene, altering the effector target. These results indicate that divergent evolution of RCC1 repeat effectors defines the Ran GTPase cycle targets and that modulation of different components of the cycle might fine-tune Ran activation during Legionella infection. IMPORTANCE Legionella pneumophila is a ubiquitous environmental bacterium which, upon inhalation, causes a life-threatening pneumonia termed Legionnaires’ disease. The opportunistic pathogen grows in amoebae and macrophages by employing a “type IV” secretion system, which secretes more than 300 different “effector” proteins into the host cell, where they subvert pivotal processes. The function of many of these effector proteins is unknown, and their evolution has not been studied. L. pneumophila RCC1 repeat effectors target the small GTPase Ran, a molecular switch implicated in different cellular processes such as nucleocytoplasmic transport and microtubule cytoskeleton dynamics. We provide evidence that one or more RCC1 repeat genes are distributed in two main clusters of L. pneumophila strains and have divergently evolved to target different components of the Ran GTPase activation cycle at different subcellular sites. Thus, L. pneumophila employs a sophisticated strategy to subvert host cell Ran GTPase during infection.


2010 ◽  
Vol 190 (1) ◽  
pp. 143-157 ◽  
Author(s):  
Adrian Mehlitz ◽  
Sebastian Banhart ◽  
André P. Mäurer ◽  
Alexis Kaushansky ◽  
Andrew G. Gordus ◽  
...  

Many bacterial pathogens translocate effector proteins into host cells to manipulate host cell functions. Here, we used a protein microarray comprising virtually all human SRC homology 2 (SH2) and phosphotyrosine binding domains to comprehensively and quantitatively assess interactions between host cell proteins and the early phase Chlamydia trachomatis effector protein translocated actin-recruiting phosphoprotein (Tarp), which is rapidly tyrosine phosphorylated upon host cell entry. We discovered numerous novel interactions between human SH2 domains and phosphopeptides derived from Tarp. The adaptor protein SHC1 was among Tarp’s strongest interaction partners. Transcriptome analysis of SHC1-dependent gene regulation during infection indicated that SHC1 regulates apoptosis- and growth-related genes. SHC1 knockdown sensitized infected host cells to tumor necrosis factor–induced apoptosis. Collectively, our findings reveal a critical role for SHC1 in early C. trachomatis–induced cell survival and suggest that Tarp functions as a multivalent phosphorylation-dependent signaling hub that is important during the early phase of chlamydial infection.


Sign in / Sign up

Export Citation Format

Share Document