secretion systems
Recently Published Documents


TOTAL DOCUMENTS

1129
(FIVE YEARS 368)

H-INDEX

95
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Pol Nadal-Jimenez ◽  
Stefanos Siozios ◽  
Nigel Halliday ◽  
Miguel Camara ◽  
Greg D.D. Hurst

Bacterial endosymbionts are found in multiple arthropod species, where they play crucial roles as nutritional symbionts, defensive symbionts or reproductive parasites. Recent work has highlighted a new clade of heritable microbes within the gammaproteobacteria that enter into both obligate and facultative symbioses, with an obligately required unculturable symbiont recently given the name Cand. Symbiopectobacterium. In this study, we describe a culturable rod shaped non-flagellated bacterial symbiont from this clade isolated from the leafhopper Empoasca decipiens. The symbiont is related to the transovarially-transmitted 'BEV' bacterium that was first isolated from the leafhopper Euscelidius variegatus by Alexander Purcell, and we therefore name the symbiont Symbiopectobacterium purcellii sp. nov. gen. nov. We further report the closed genome sequence for S. purcellii. The genome is atypical for a heritable microbe, being large in size, without profound AT bias and with little evidence of pseudogenization. The genome is predicted to encode Type II, III and VI secretion systems and associated effectors and a non-ribosomal peptide synthase array likely to produce bioactive small molecules. Predicted metabolism is more complete than for other symbionts in the Symbiopectobacterium clade, and the microbe is predicted to synthesize a range of B vitamins. However, Biolog plate analysis indicate metabolism is depauperate compared to the sister clade, represented by Pectobacterium carotovorum. A quorum-sensing pathway related to that of Pectobacterium spp. (containing an overlapping expI-expR1 pair in opposite directions and a "solo" expR2) is evidenced, and LC-MS/MS analysis reveals the presence of 3-hydroxy-C10-HSL as the sole N-acylhomoserine lactone (AHL) in our strain. This AHL profile is profoundly divergent from that of other Erwinia and Pectobacterium spp., which produce mostly 3-oxo-C6- and 3-oxo-C8-HSL and could aid group identification. Thus, this microbe denotes one that has lost certain pathways associated with a saprophytic lifestyle but represents an important baseline against which to compare other members of the genus Symbiopectobacterium that show more profound integration into host biology.


2022 ◽  
Vol 10 (1) ◽  
pp. 187
Author(s):  
Antoine Zboralski ◽  
Adrien Biessy ◽  
Martin Filion

Type III secretion systems (T3SSs) are bacterial membrane-embedded nanomachines translocating effector proteins into the cytoplasm of eukaryotic cells. They have been intensively studied for their important roles in animal and plant bacterial diseases. Over the past two decades, genome sequencing has unveiled their ubiquitous distribution in many taxa of Gram-negative bacteria, including plant-beneficial ones. Here, we discuss the distribution and functions of the T3SS in two agronomically important bacterial groups: the symbiotic nodule-forming nitrogen-fixing rhizobia and the free-living plant-beneficial Pseudomonas spp. In legume-rhizobia symbiosis, T3SSs and their cognate effectors play important roles, including the modulation of the plant immune response and the initiation of the nodulation process in some cases. In plant-beneficial Pseudomonas spp., the roles of T3SSs are not fully understood, but pertain to plant immunity suppression, biocontrol against eukaryotic plant pathogens, mycorrhization facilitation, and possibly resistance against protist predation. The diversity of T3SSs in plant-beneficial bacteria points to their important roles in multifarious interkingdom interactions in the rhizosphere. We argue that the gap in research on T3SSs in plant-beneficial bacteria must be bridged to better understand bacteria/eukaryotes rhizosphere interactions and to support the development of efficient plant-growth promoting microbial inoculants.


BMC Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Lin Chou ◽  
Yu-Chen Lin ◽  
Mindia Haryono ◽  
Mary Nia M. Santos ◽  
Shu-Ting Cho ◽  
...  

Abstract Background Many named species as defined in current bacterial taxonomy correspond to species complexes. Uncertainties regarding the organization of their genetic diversity challenge research efforts. We utilized the Agrobacterium tumefaciens species complex (a.k.a. Agrobacterium biovar 1), a taxon known for its phytopathogenicity and applications in transformation, as a study system and devised strategies for investigating genome diversity and evolution of species complexes. Results We utilized 35 genome assemblies, including 14 newly generated ones, to achieve a phylogenetically balanced sampling of A. tumefaciens. Our genomic analysis suggested that the 10 genomospecies described previously are distinct biological species and supported a quantitative guideline for species delineation. Furthermore, our inference of gene content and core-genome phylogeny allowed for investigations of genes critical in fitness and ecology. For the type VI secretion system (T6SS) involved in interbacterial competition and thought to be conserved, we detected multiple losses and one horizontal gene transfer. For the tumor-inducing plasmids (pTi) and pTi-encoded type IV secretion system (T4SS) that are essential for agrobacterial phytopathogenicity, we uncovered novel diversity and hypothesized their involvement in shaping this species complex. Intriguingly, for both T6SS and T4SS, genes encoding structural components are highly conserved, whereas extensive diversity exists for genes encoding effectors and other proteins. Conclusions We demonstrate that the combination of a phylogeny-guided sampling scheme and an emphasis on high-quality assemblies provides a cost-effective approach for robust analysis in evolutionary genomics. We show that the T6SS VgrG proteins involved in specific effector binding and delivery can be classified into distinct types based on domain organization. The co-occurrence patterns of VgrG-associated domains and the neighboring genes that encode different chaperones/effectors can be used to infer possible interacting partners. Similarly, the associations between plant host preference and the pTi type among these strains can be used to infer phenotype-genotype correspondence. Our strategies for multi-level investigations at scales that range from whole genomes to intragenic domains and phylogenetic depths from between- to within-species are applicable to other bacteria. Furthermore, modularity observed in the molecular evolution of genes and domains is useful for inferring functional constraints and informing experimental works.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Esther Blanco-Romero ◽  
David Durán ◽  
Daniel Garrido-Sanz ◽  
Rafael Rivilla ◽  
Marta Martín ◽  
...  

Rhizosphere colonization by bacteria involves molecular and cellular mechanisms, such as motility and chemotaxis, biofilm formation, metabolic versatility, or biosynthesis of secondary metabolites, among others. Nonetheless, there is limited knowledge concerning the main regulatory factors that drive the rhizosphere colonization process. Here we show the importance of the AmrZ and FleQ transcription factors for adaption in the plant growth-promoting rhizobacterium (PGPR) and rhizosphere colonization model Pseudomonas ogarae F113. RNA-Seq analyses of P. ogarae F113 grown in liquid cultures either in exponential and stationary growth phase, and rhizosphere conditions, revealed that rhizosphere is a key driver of global changes in gene expression in this bacterium. Regarding the genetic background, this work has revealed that a mutation in fleQ causes considerably more alterations in the gene expression profile of this bacterium than a mutation in amrZ under rhizosphere conditions. The functional analysis has revealed that in P. ogarae F113, the transcription factors AmrZ and FleQ regulate genes involved in diverse bacterial functions. Notably, in the rhizosphere, these transcription factors antagonistically regulate genes related to motility, biofilm formation, nitrogen, sulfur, and amino acid metabolism, transport, signalling, and secretion, especially the type VI secretion systems. These results define the regulon of two important bifunctional transcriptional regulators in pseudomonads during the process of rhizosphere colonization.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Namgyu Kim ◽  
Gil Han ◽  
Hyejung Jung ◽  
Hyun-Hee Lee ◽  
Jungwook Park ◽  
...  

Burkholderia glumae are bacteria pathogenic to rice plants that cause a disease called bacterial panicle blight (BPB) in rice panicles. BPB, induced by B. glumae, causes enormous economic losses to the rice agricultural industry. B. glumae also causes bacterial disease in other crops because it has various virulence factors, such as toxins, proteases, lipases, extracellular polysaccharides, bacterial motility, and bacterial secretion systems. In particular, B. glumae BGR1 harbors type VI secretion system (T6SS) with functionally distinct roles: the prokaryotic targeting system and the eukaryotic targeting system. The functional activity of T6SS requires 13 core components and T6SS accessory proteins, such as adapters containing DUF2169, DUF4123, and DUF1795 domains. There are two genes, bglu_1g23320 and bglu_2g07420, encoding the DUF2169 domain-containing protein in the genome of B. glumae BGR1. bglu_2g07420 belongs to the gene cluster of T6SS group_5 in B. glumae BGR1, whereas bglu_1g23320 does not belong to any T6SS gene cluster in B. glumae BGR1. T6SS group_5 of B. glumae BGR1 is involved in bacterial virulence in rice plants. The DUF2169 domain-containing protein with a single domain can function by itself; however, Δu1g23320 showed no attenuated virulence in rice plants. In contrast, Δu2g07420DUF2169 and Δu2g07420PPR did exhibit attenuated virulence in rice plants. These results suggest that the pentapeptide repeats region of the C-terminal additional domain, as well as the DUF2169 domain, is required for complete functioning of the DUF2169 domain-containing protein encoded by bglu_2g07420. bglu_2g07410, which encodes the pentapeptide repeats protein, composed of only the pentapeptide repeats region, is located downstream of bglu_2g07420. Δu2g07410 also shows attenuated virulence in rice plants. This finding suggests that the pentapeptide repeats protein, encoded by bglu_2g07410, is involved in bacterial virulence. This study is the first report that the DUF2169 domain-containing protein and pentapeptide repeats protein are involved in bacterial virulence to the rice plants as T6SS accessory proteins, encoded in the gene cluster of the T6SS group_5.


Author(s):  
Martina Aulitto ◽  
Laura Martinez-Alvarez ◽  
Gabriella Fiorentino ◽  
Danila Limauro ◽  
Xu Peng ◽  
...  

The production of bio-chemicals requires the use of microbial strains with efficient substrate conversion and excellent environmental robustness, such as Bacillus coagulans spp. So far the genomes of about 50 strains have been sequenced. Herein, we report a comparative genomic analysis of nine strains on the full repertoire of CAZymes, secretion systems, and resistance mechanisms to environmental challenges. Moreover, B. coagulans Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) immune system along with CRISPR-associated Cas) genes, was also analysed. Overall, this study expands our understanding of the strains genomic diversity of B. coagulans to fully exploit its potential in biotechnological applications.


2021 ◽  
Author(s):  
Zhiqing Wang ◽  
Andrei Fokine ◽  
Xinwu Guo ◽  
Wen Jiang ◽  
Michael G Rossmann ◽  
...  

Antibiotic resistance poses a growing risk to public health requiring new tools to combat pathogenic bacteria. Contractile injection systems, including bacteriophage tails, pyocins, and bacterial type VI secretion systems, can efficiently penetrate cell envelopes and become potential antibacterial agents. Bacteriophage XM1 is a dsDNA virus belonging to the Myoviridae family and infecting Vibrio bacteria. The XM1 virion, made of 18 different proteins, consists of an icosahedral head and a contractile tail, terminated with a baseplate. Here we report cryo-EM reconstructions of all components of the XM1 virion and describe atomic structures of 14 XM1 proteins. The XM1 baseplate is composed of a central hub surrounded by six wedge modules to which twelve spikes are attached. The XM1 tail contains a fewer number of smaller proteins compared with other reported phage baseplates, depicting the minimum requirements for building an effective cell-envelope-penetrating machine. We describe the tail sheath structure in the pre-infection post-infection states and its conformational changes during infection. In addition, we report, for the first time, the in situ structure of the phage neck region to near-atomic resolution. Based on these structures, we propose mechanisms of virus assembly and infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Melanie M. Callaghan ◽  
Birgit Koch ◽  
Kathleen T. Hackett ◽  
Amy K. Klimowicz ◽  
Ryan E. Schaub ◽  
...  

Partitioning proteins are well studied as molecular organizers of chromosome and plasmid segregation during division, however little is known about the roles partitioning proteins can play within type IV secretion systems. The single-stranded DNA (ssDNA)-secreting gonococcal T4SS has two partitioning proteins, ParA and ParB. These proteins work in collaboration with the relaxase TraI as essential facilitators of type IV secretion. Bacterial two-hybrid experiments identified interactions between each partitioning protein and the relaxase. Subcellular fractionation demonstrated that ParA is found in the cellular membrane, whereas ParB is primarily in the membrane, but some of the protein is in the soluble fraction. Since TraI is known to be membrane-associated, these data suggest that the gonococcal relaxosome is a membrane-associated complex. In addition, we found that translation of ParA and ParB is controlled by an RNA switch. Different mutations within the stem-loop sequence predicted to alter folding of this RNA structure greatly increased or decreased levels of the partitioning proteins.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sophanit Mekasha ◽  
Dirk Linke

Bacterial fish pathogens are one of the key challenges in the aquaculture industry, one of the fast-growing industries worldwide. These pathogens rely on arsenal of virulence factors such as toxins, adhesins, effectors and enzymes to promote colonization and infection. Translocation of virulence factors across the membrane to either the extracellular environment or directly into the host cells is performed by single or multiple dedicated secretion systems. These secretion systems are often key to the infection process. They can range from simple single-protein systems to complex injection needles made from dozens of subunits. Here, we review the different types of secretion systems in Gram-negative bacterial fish pathogens and describe their putative roles in pathogenicity. We find that the available information is fragmented and often descriptive, and hope that our overview will help researchers to more systematically learn from the similarities and differences between the virulence factors and secretion systems of the fish-pathogenic species described here.


2021 ◽  
Author(s):  
Grace I Borlee ◽  
Mihnea R. Mangalea ◽  
Kevin H. Martin ◽  
Brooke A. Plumley ◽  
Samuel J. Golon ◽  
...  

The regulation and production of secondary metabolites during biofilm growth of Burkholderia spp. is not well understood. To learn more about the crucial role and regulatory control of cryptic molecules produced during biofilm growth, we disrupted c-di-GMP signaling in Burkholderia pseudomallei, a soil-borne bacterial saprophyte and the etiologic agent of melioidosis. Our approach to these studies combined transcriptional profiling with genetic deletions that targeted key c-di-GMP regulatory components to characterize responses to changes in temperature. Mutational analyses and conditional expression studies of c-di-GMP genes demonstrates their contribution to phenotypes such as biofilm formation, colony morphology, motility, and expression of secondary metabolite biosynthesis when grown as a biofilm at different temperatures. RNA-seq analysis was performed at varying temperatures in a ΔII2523 mutant background that is responsive to temperature alterations resulting in hypo- and hyper- biofilm forming phenotypes. Differential regulation of genes was observed for polysaccharide biosynthesis, secretion systems, and nonribosomal peptide and polyketide synthase (NRPS/PKS) clusters in response to temperature changes. Deletion mutations of biosynthetic gene clusters (BGCs) clusters 2, 11, 14 (syrbactin), and 15 (malleipeptin) in wild-type and ΔII2523 backgrounds also reveals the contribution of these BGCs to biofilm formation and colony morphology in addition to inhibition of Bacillus subtilis and Rhizoctonia solani. Our findings suggest that II2523 impacts the regulation of genes that contribute to biofilm formation and competition. Characterization of cryptic BGCs under differing environmental conditions will allow for a better understanding of the role of secondary metabolites in the context of biofilm formation and microbe-microbe interactions.


Sign in / Sign up

Export Citation Format

Share Document