virulence proteins
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 47)

H-INDEX

39
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Ming Zhang ◽  
Jun Liu ◽  
Zhenzhen Yin ◽  
Li Zhang

Bacillus cereus is a food contaminant with widely varying enterotoxic potential of its virulence proteins. In this article, phylogenetic analysis of the whole-genome amino acid sequences of 41 strains, evolutionary distance calculation of the amino acid sequences of the virulence genes, and functional and structural prediction of the virulence proteins were performed to reveal the taxonomically diverse distribution of virulence factors. The genome evolution of the strains showed a clustering trend based on the coding virulence genes. The strains of B. cereus have evolved into non-toxic risk and toxic risk clusters with medium-high- and medium-low-risk clusters. The distances of evolutionary transfer relative to housekeeping genes of incomplete virulence genes were greater than those of complete virulence genes, and the distance values of HblACD were higher than those of nheABC and CytK among the complete virulence genes. Cytoplasmic localization was impossible for all the virulence proteins, and NheB, NheC, Hbl-B, and Hbl-L 1 were extracellular according to predictive analysis. Nhe and Hbl proteins except CytK had similar spatial structures. The predicted structures of Nhe and Hbl mainly showed ‘head’ and ‘tail’ domains. The ‘head’ of NheA and Hbl-B, including two α-helices separated by β-tongue strands, might play a special role in Nhe trimers and Hbl trimers, respectively. The ‘cap’ of CytK, which includes two ‘latches’ with many β-sheets, formed a β-barrel structure with pores, and a ‘rim’ balanced the structure. The evolution of B. cereus strains showed a clustering tendency based on the coding virulence genes, and the complete virulence-gene operon combination had higher relative genetic stability. The beta-tongue or latch associated with β-sheet folding might play an important role in the binding of virulence structures and pore-forming toxins in B. cereus .


2021 ◽  
Vol 22 ◽  
Author(s):  
Taruna Mohinani ◽  
Aditya Saxena ◽  
Shoor Vir Singh

Background: Mycobacterium ulcerans is the fundamental agent of the third most common Mycobacterial disease known as Buruli Ulcer (BU). It is an infection of the skin and soft tissue affecting the human population worldwide. Presently, the vaccine is not available against BU. Objective: This study aimed to investigate the vaccine potential of virulence proteins of M. ulcerans computationally. Methods: Chromosome encoded virulence proteins of Mycobacterium ulcerans strain Agy99 were selected, which were available at the VFDB database. These proteins were analyzed for their subcellular localization, antigenicity, and human non-homology analysis. Ten virulence factors were finally chosen and analyzed for further study. Three-dimensional structures for selected proteins were predicted using Phyre2. B cell and T cell epitope analysis was done using methods available at Immune Epitope Database and Analysis Resource. Antigenicity, allergenicity, and toxicity analysis were also done to predict epitopes. Molecular docking analysis was done for T cell epitopes, those showing overlap with B cell epitopes. Results: Selected virulence proteins were predicted with B cell and T cell epitopes. Some of the selected proteins were found to be already reported as antigenic in other mycobacteria. Some of the predicted epitopes also had similarities with experimentally identified epitopes of M. ulcerans and M. tuberculosis which further supported our predictions. Conclusion : In-silico approach used for the vaccine candidate identification predicted some virulence proteins that could be proved important in future vaccination strategies against this chronic disease. Predicted epitopes require further experimental validation for their potential use as peptide vaccines.


Author(s):  
Bryn Short ◽  
Christopher Delaney ◽  
Emily McKloud ◽  
Jason L. Brown ◽  
Ryan Kean ◽  
...  

Candida albicans is an opportunistic pathogen found throughout multiple body sites and is frequently co-isolated from infections of the respiratory tract and oral cavity with Staphylococcus aureus. Herein we present the first report of the effects that S. aureus elicits on the C. albicans transcriptome. Dual-species biofilms containing S. aureus and C. albicans mutants defective in ALS3 or ECE1 were optimised and characterised, followed by transcriptional profiling of C. albicans by RNA-sequencing (RNA-seq). Altered phenotypes in C. albicans mutants revealed specific interaction profiles between fungus and bacteria. The major adhesion and virulence proteins Als3 and Ece1, respectively, were found to have substantial effects on the Candida transcriptome in early and mature biofilms. Despite this, deletion of ECE1 did not adversely affect biofilm formation or the ability of S. aureus to interact with C. albicans hyphae. Upregulated genes in dual-species biofilms corresponded to multiple gene ontology terms, including those attributed to virulence, biofilm formation and protein binding such as ACE2 and multiple heat-shock protein genes. This shows that S. aureus pushes C. albicans towards a more virulent genotype, helping us to understand the driving forces behind the increased severity of C. albicans-S. aureus infections.


mBio ◽  
2021 ◽  
Author(s):  
Poyin Chen ◽  
Brian C. Russo ◽  
Jeffrey K. Duncan-Lowey ◽  
Natasha Bitar ◽  
Keith T. Egger ◽  
...  

Type 3 secretion systems are nanomachines employed by many bacteria, including Shigella , which deliver into human cells bacterial virulence proteins that alter cellular function in ways that promote infection. Delivery of Shigella virulence proteins occurs through a pore formed in human cell membranes by the IpaB and IpaC proteins.


Author(s):  
Ramya Ravindhiran ◽  
Ramya Krishnamurthy ◽  
Karthiga Sivarajan ◽  
JothiNayaki Sekar ◽  
Kumarappan Chidambaram ◽  
...  

Fungal infections are more predominant in agricultural and clinical fields. Aspergillosis caused by Aspergillus fumigatus leads to respiratory failure in patients along with various illnesses. Due to the limitation of antifungal therapy and antifungal drugs, there is an emergence to develop efficient antifungal compounds from natural sources to cure and prevent fungal infections. The present study deals with the investigation of the mechanism of active compounds from our candidate agonist Aspergillus giganteus for aspergillosis. The integrity of treated Aspergillus fumigatus cell membrane and nuclear membrane was analyzed by determining the release of cellular materials. The antagonistic potential of antifungal compounds on the pathogen was confirmed by SEM analysis. The effective concentration of antifungal compounds (AFCs) was found to be 250µg/ml. The GC-MS profiling has revealed the bioactive metabolites responsible for the antagonistic nature of Aspergillus giganteus. The bioavailability and toxicological properties of pathogenesis related proteins have proved the efficiency of pharmacokinetic properties of selected compounds. Interaction of sarcin, thionin, chitinase and its derivatives from Aspergillus giganteus with the virulence proteins of UDP-N-acetylglucosamine pyrophosphorylase, N-myristoyl transferase and Chitinase have proved the druggable nature of the antifungal compounds.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6811
Author(s):  
Raed A. H. Almihyawi ◽  
Halah M. H. Al-Hasani ◽  
Tabarak Sabah Jassim ◽  
Ziyad Tariq Muhseen ◽  
Sitong Zhang ◽  
...  

Multi-drug resistance (MDR) bacterial pathogens pose a threat to global health and warrant the discovery of new therapeutic molecules, particularly those that can neutralize their virulence and stop the evolution of new resistant mechanisms. The superbug nosocomial pathogen, Pseudomonas aeruginosa, uses a multiple virulence factor regulator (MvfR) to regulate the expression of multiple virulence proteins during acute and persistent infections. The present study targeted MvfR with the intention of designing novel anti-virulent compounds, which will function in two ways: first, they will block the virulence and pathogenesis P. aeruginosa by disrupting the quorum-sensing network of the bacteria, and second, they will stop the evolution of new resistant mechanisms. A structure-based virtual screening (SBVS) method was used to screen druglike compounds from the Asinex antibacterial library (~5968 molecules) and the comprehensive marine natural products database (CMNPD) (~32 thousand compounds), against the ligand-binding domain (LBD) of MvfR, to identify molecules that show high binding potential for the relevant pocket. In this way, two compounds were identified: Top-1 (4-((carbamoyloxy)methyl)-10,10-dihydroxy-2,6-diiminiodecahydropyrrolo[1,2-c]purin-9-yl sulfate) and Top-2 (10,10-dihydroxy-2,6-diiminio-4-(((sulfonatocarbamoyl)oxy)methyl)decahydropyrrolo[1,2-c]purin-9-yl sulfate), in contrast to the co-crystallized M64 control. Both of the screened leads were found to show deep pocket binding and interactions with several key residues through a network of hydrophobic and hydrophilic interactions. The docking results were validated by a long run of 200 ns of molecular dynamics simulation and MM-PB/GBSA binding free energies. All of these analyses confirmed the presence of strong complex formation and rigorous intermolecular interactions. An additional analysis of normal mode entropy and a WaterSwap assay were also performed to complement the aforementioned studies. Lastly, the compounds were found to show an acceptable range of pharmacokinetic properties, making both compounds potential candidates for further experimental studies to decipher their real biological potency.


2021 ◽  
Author(s):  
◽  
Janet Youkhana

<p>Cyclic di-guanosine-monophosphate (c-di-GMP) has been recognized as a second messenger in bacteria controlling multiple cellular processes such as biofilm formation, motility, and virulence. Proteins containing GGDEF and EAL domains are engaged in the synthesis and degradation, respectively, of cyclic di-GMP. Some bacteria contain multiple proteins with GGDEF and EAL domains. The genome of Mycobacterium tuberculosis encodes only one protein (Rv1354c) which contains a GGDEF domain. This protein also contains a tandem EAL. The function of this protein in mycobacteria has not yet been determined. In this study, the orthologue of Rv1354c was investigated in Mycobacterium smegmatis (MSMEG_2196). The expression of MSMEG_2196 in M. smegmatis was altered by constructing sense and antisense expressing strains. The effect of the altered expression of MSMEG_2196 on M. smegmatis was tested under carbon, oxygen, phosphorous, and nitrogen limited growth conditions. There was no significant effect on growth in either the antisense or sense expressing strains grown under nutrient-rich, or carbon-, or oxygen-, or phosphorous limitation conditions. However, a growth effect was observed in the antisense expressing strain when grown under nitrogen-limited conditions. In particular, at mid stationary-phase (1,800 min) the MSMEG_2196 antisense strain had an OD600 value of 0.60, compared to that of the control M. smegmatis/pMind strain (OD600 value of 1.09). These results were further confirmed by the low colony forming units measures observed in MSMEG_2196 antisense strain. Proteomic analysis was carried out on the MSMEG_2196 antisesne expressing strain grown in the nitrogen-limited condition. Proteins that were differentially expressed were identified by mass spectrometry. A number of the proteins that were down-regulated in the antisense expressing strain are important in the survival of the bacteria under nitrogen-limited conditions. This study indicates a role for MSMEG_2196 in growth or survival of mycobacteria under nitrogen-limitations.</p>


2021 ◽  
Author(s):  
◽  
Janet Youkhana

<p>Cyclic di-guanosine-monophosphate (c-di-GMP) has been recognized as a second messenger in bacteria controlling multiple cellular processes such as biofilm formation, motility, and virulence. Proteins containing GGDEF and EAL domains are engaged in the synthesis and degradation, respectively, of cyclic di-GMP. Some bacteria contain multiple proteins with GGDEF and EAL domains. The genome of Mycobacterium tuberculosis encodes only one protein (Rv1354c) which contains a GGDEF domain. This protein also contains a tandem EAL. The function of this protein in mycobacteria has not yet been determined. In this study, the orthologue of Rv1354c was investigated in Mycobacterium smegmatis (MSMEG_2196). The expression of MSMEG_2196 in M. smegmatis was altered by constructing sense and antisense expressing strains. The effect of the altered expression of MSMEG_2196 on M. smegmatis was tested under carbon, oxygen, phosphorous, and nitrogen limited growth conditions. There was no significant effect on growth in either the antisense or sense expressing strains grown under nutrient-rich, or carbon-, or oxygen-, or phosphorous limitation conditions. However, a growth effect was observed in the antisense expressing strain when grown under nitrogen-limited conditions. In particular, at mid stationary-phase (1,800 min) the MSMEG_2196 antisense strain had an OD600 value of 0.60, compared to that of the control M. smegmatis/pMind strain (OD600 value of 1.09). These results were further confirmed by the low colony forming units measures observed in MSMEG_2196 antisense strain. Proteomic analysis was carried out on the MSMEG_2196 antisesne expressing strain grown in the nitrogen-limited condition. Proteins that were differentially expressed were identified by mass spectrometry. A number of the proteins that were down-regulated in the antisense expressing strain are important in the survival of the bacteria under nitrogen-limited conditions. This study indicates a role for MSMEG_2196 in growth or survival of mycobacteria under nitrogen-limitations.</p>


Author(s):  
S. Abinaya ◽  
J. Vijayashree Priyadharsini ◽  
A. S. Smiline Girija ◽  
P. Sankar Ganesh

Introduction: Periodontal disease is an infection of the tissues that hold your teeth in place. It's typically caused by poor brushing and flossing habits that allow plaque, a sticky film of bacteria, to build up on the teeth and harden. Elimination of these pathogens from the site of infection remains a perplexing task, which demands the use of antibiotics. The emergence of drug resistant forms has spurred interest into identifying novel therapeutic targets against these pathogens. Aim: The present study employs virtual screening method to identify the protein network interaction of berberine with red complex pathogens. Materials and Methods: Computational tools were used to identify the targets, assess their functional role and virulence property. Further, the peptide epitopes present in the virulence factors were identified using the BepiPred tool. The subcellular location of the virulence proteins was also elucidated using PSORTb. Results: Berberine was found to target vital protein transporters such as TetR family transcriptional regulator and MerR family transcriptional regulator, which is known to play a crucial role in the survival of bacterial cells. Conclusion: Hence the present study provides preliminary data on the protein targets of berberine against red complex pathogens. However, in vitro studies using the compound is warranted to further confirm the efficacy of the compound.


Author(s):  
Farid El Kasmi

Plants utilize cell-surface localized and intracellular leucine-rich repeat (LRR) immune receptors to detect pathogens and to activate defense responses, including transcriptional reprogramming and the initiation of a form of programmed cell death of infected cells. Cell death initiation is mainly associated with the activation of nucleotide-binding LRR receptors (NLRs). NLRs recognize the presence or cellular activity of pathogen-derived virulence proteins, so-called effectors. Effector-dependent NLR activation leads to the formation of higher order oligomeric complexes, termed resistosomes. Resistosomes can either form potential calcium-permeable cation channels at cellular membranes and initiate calcium influxes resulting in activation of immunity and cell death or function as NADases whose activity is needed for the activation of downstream immune signaling components, depending on the N-terminal domain of the NLR protein. In this mini-review, the current knowledge on the mechanisms of NLR-mediated cell death and resistance pathways during plant immunity is discussed.


Sign in / Sign up

Export Citation Format

Share Document