scholarly journals An updated infrageneric classification of the oaks: review of previous taxonomic schemes and synthesis of evolutionary patterns

2017 ◽  
Author(s):  
Thomas Denk ◽  
Guido W. Grimm ◽  
Paul S. Manos ◽  
Min Deng ◽  
Andrew Hipp

In this paper, we review major classification schemes proposed for oaks by John Claudius Loudon, Anders Sandøe Ørsted, William Trelease, Otto Karl Anton Schwarz, Aimée Antoinette Camus, Yuri Leonárdovich Menitsky, and Kevin C. Nixon. Classifications of oaks (Fig. 1) have thus far been based entirely on morphological characters. They differed profoundly from each other because each taxonomist gave a different weight to distinguishing characters; often characters that are homoplastic in oaks. With the advent of molecular phylogenetics our view has considerably changed. One of the most profound changes has been the realisation that the traditional split between the East Asian subtropical to tropical subgenus Cyclobalanopsis and the subgenus Quercus that includes all other oaks is artificial. The traditional concept has been replaced by that of two major clades, each comprising three infrageneric groups: a Palearctic-Indomalayan clade including Group Ilex (Ilex oaks), Group Cerris (Cerris oaks) and Group Cyclobalanopsis (cycle-cup oaks), and a predominantly Nearctic clade including Group Protobalanus (intermediate or golden cup oaks), Group Lobatae (red oaks) and Group Quercus (white oaks, with most species in America and some 30 species in Eurasia). The main morphological feature characterising these phylogenetic lineages is pollen morphology, a character overlooked in traditional classifications. This realisation, along with the now available (molecular-)phylogenetic framework, opens new avenues for biogeographic, ecological and evolutionary studies and a re-appraisal of the fossil record. We provide an overview about recent advances in these fields and outline how the results of these studies contribute to the establishment of a unifying systematic scheme of oaks. Ultimately, we propose an updated classification of Quercus recognising two subgenera with eight sections. This classification considers morphological traits, molecular-phylogenetic relationships, and the evolutionary history of one of the most important temperate woody plant genera.

2021 ◽  
Vol 12 ◽  
Author(s):  
Isabel Draper ◽  
Ricardo Garilleti ◽  
Juan Antonio Calleja ◽  
Maren Flagmeier ◽  
Vicente Mazimpaka ◽  
...  

Mosses of the subfamily Orthotrichoideae represent one of the main components of the cryptogam epiphytic communities in temperate areas. During the last two decades, this taxonomical group has undergone an extensive revision that has led to its rearrangement at the generic level. However, their phylogenetic relationships and inferences on the evolutionary patterns that have driven the present diversity have little advanced. In this study, we present a dated molecular phylogenetic reconstruction at the subfamily level, including 130 samples that represent the 12 genera currently recognized within the subfamily, and the analysis of four molecular markers: ITS2, rps4, trnG, and trnL-F. We also analyze 13 morphological characters of systematic value to infer their origin and diagnostic utility within the subfamily. The phylogenetic reconstruction yields three main clades within the subfamily, two of which correspond to the tribe Zygodonteae, and one to Orthotricheae. Within Zygodonteae, the genus Zygodon results to be a polyphyletic artificial assembly, and we propose to separate a new genus named Australoria. Conversely, our results do not support the separation of Pentastichella and Pleurorthotrichum at the genus level and we therefore propose to include Pleurorthotrichum in Pentastichella. Regarding Orthotricheae, our analyses clearly allow the distinction of two subtribes: Orthotrichinae and Lewinskyinae. Within the latter, Ulota results a polyphyletic entity, and therefore we propose the segregation of a separate new genus named Atlantichella. Dating analyses allow us to conclude that the split of the tribes within Orthotrichoideae dates from the Middle Jurassic, while the diversification of Orthotrichum and Zygodon probably started during the Late Cretaceous. However, most of the extant genera of this subfamily seem to be younger, and apparently its highest diversification burst took place during the Oligocene. Finally, the analysis of the morphological traits reveals that most of the characters previously used to separate genera and here tested are homoplastic, which has hindered the taxonomical and systematic proposals for decades. However, even if there are no exclusive characters, all of the genera can be defined by the combination of a few characters.


2021 ◽  
pp. 1-28
Author(s):  
Yoshimasa Kumekawa ◽  
Haruka Fujimoto ◽  
Osamu Miura ◽  
Ryo Arakawa ◽  
Jun Yokoyama ◽  
...  

Abstract Harvestmen (Arachnida: Opiliones) are soil animals with extremely low dispersal abilities that experienced allopatric differentiation. To clarify the morphological and phylogenetic differentiation of the endemic harvestman Zepedanulus ishikawai (Suzuki, 1971) (Laniatores: Epedanidae) in the southern part of the Ryukyu Archipelago, we conducted molecular phylogenetic analyses and divergence time estimates based on CO1 and 16S rRNA sequences of mtDNA, the 28S rRNA sequence of nrDNA, and the external morphology. A phylogenetic tree based on mtDNA sequences indicated that individuals of Z. ishikawai were monophyletic and were divided into clade I and clade II. This was supported by the nrDNA phylogenetic tree. Although clades I and II were distributed sympatrically on all three islands examined (Ishigaki, Iriomote, and Yonaguni), heterogeneity could not be detected by polymerase chain reaction–restriction fragment length polymorphism of nrDNA, indicating that clades I and II do not have a history of hybridisation. Also, several morphological characters differed significantly between individuals of clade I and clade II. The longstanding isolation of the southern Ryukyus from the surrounding islands enabled estimation of the original morphological characters of both clades of Z. ishikawai.


Taxon ◽  
2020 ◽  
Vol 69 (1) ◽  
pp. 100-123
Author(s):  
Daniel A. Zhigila ◽  
G. Anthony Verboom ◽  
A. Muthama Muasya

2012 ◽  
Vol 58 (6) ◽  
pp. 837-850 ◽  
Author(s):  
Lanping Zheng ◽  
Junxing Yang ◽  
Xiaoyong Chen

Abstract The Labeoninae is a subfamily of the family Cyprinidae, Order Cypriniformes. Oromandibular morphology within the Labeoninae is the greatest among cyprinid fishes. Although several phylogenetic studies about labeonines have been undertaken the results have been inconsistent and a comprehensive phylogeny is needed. Further, an incongruence between morphological and molecular phylogeny requires a systematic exploration of the significance of morphological characters on the basis of the molecular phylogeny. In this study, a total of 292 nucleotide sequences from 73 individuals (representing 24 genera and 73 species) of Labeoninae were analyzed. The results of the phylogenetic analysis indicate that there are four major clades within Labeoninae and three monophyletic lineages within the fourth clade. Results of the character evolution show that all oroman-dibular morphological characters are homoplastically distributed on the molecular phylogenetic tree and suggests that these characters evolved several times during the history of labeonines. In particular, the labeonine , a specific disc on the lower lip, has been acquired three times and reversed twice. These morphological characters do not have systematic significance but can be useful for taxonomy. The results of biogeography suggest that the Labeoninae originated from Southeast Asia and separately dispersed to Africa, East Asia and South Asia.


2015 ◽  
Vol 29 (6) ◽  
pp. 591 ◽  
Author(s):  
Marco Gebiola ◽  
Antonio P. Garonna ◽  
Umberto Bernardo ◽  
Sergey A. Belokobylskij

Doryctinae (Hymenoptera : Braconidae) is a large and diverse subfamily of parasitic wasps that has received much attention recently, with new species and genera described and phylogenies based on morphological and/or molecular data that have improved higher-level classification and species delimitation. However, the status of several genera is still unresolved, if not controversial. Here we focus on two related groups of such genera, Dendrosoter Wesmael–Caenopachys Foerster and Ecphylus Foerster–Sycosoter Picard & Lichtenstein. We integrated morphological and molecular (COI and 28S–D2 genes) evidence to highlight, by phylogenetic analyses (maximum likelihood and Bayesian) and a posteriori morphological examination, previously overlooked variation, which is here illustrated and discussed. Monophyly of Dendrosoter and Caenopachys and the presence of synapomorphic morphological characters support synonymy of Caenopachys under Dendrosoter. Low genetic differentiation and high variability for putatively diagnostic morphological characters found in both C. hartigii (Ratzeburg) and C. caenopachoides (Ruschka) supports synonymy of D. caenopachoides under D. hartigii, syn. nov. Morphological and molecular evidence together also indicate independent generic status for Sycosoter, stat. rev., which is here resurrected. This work represents a further advancement in the framework of the ongoing effort to improve systematics and classification of the subfamily Doryctinae.


REINWARDTIA ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 27-36
Author(s):  
Sreehari S Nair ◽  
K.H. Amitha Bachan ◽  
P.J. Ebin

NAIR, S. S., BACHAN, K. H. A.  &  EBIN, P. J.  2021. Diversity and phenetic study on syconium of Ficus L. (Moraceae) from Kerala, India revealing natural classification along  with an identification key. Reinwardtia  20(1): 27–36. — Ficus L. commonly called ‘figs’ is one of the most complex genera among the angiosperms with its specialised inflorescence called syconium that looks like a fruit. Syconium of 33 species of  Ficus reported from Kerala were observed here to develop a novel key, solely based on syconium morphology. Numerical taxonomic methodology  for syconium  morphological characters  were standardised, considering 22 characters with 104 character states and analysed using similarity clustering. The floral features of the genus are very much complex and all the existing keys for the species identification relays on both vegetative as well as floral features. Hence, the present key will be practical  in  use  when  syconium  is  the  only  available  part.  The  numerical  analysis  of  the  syconium  features  well clustered and separated the trees with cauliflorous inflorescence, hemi epiphytic -epiphytic life forms and independent trees similar to the natural classification of the figs as  “Atthi, Itthi and Aal”, indicating that phenetic analysis using the syconium  characters  alone  provided  a  grouping  similar  to  the  natural  grouping  based  on  the  habit.  Preliminary phylogenetic analysis of figs also provided a similar clustering. This gives an insight into the fact that the separation of figs into these natural groups is reflecting phylogenetic trait. Detailed studies including more morphological traits and molecular analysis could establish the phylogenetic relation of figs in relation to the evolutionary history of climate and vegetation.


2019 ◽  
Vol 187 (4) ◽  
pp. 1259-1277 ◽  
Author(s):  
Robin Kundrata ◽  
Stephan M Blank ◽  
Alexander S Prosvirov ◽  
Eliska Sormova ◽  
Matthew L Gimmel ◽  
...  

Abstract Cydistinae are a rare monogeneric beetle lineage from Asia with a convoluted history of classification, historically placed in various groups within the series Elateriformia. However, their position has never been rigorously tested. To resolve this long-standing puzzle, we are the first to present sequences of two nuclear and two mitochondrial markers for four species of Cydistinae to determine their phylogenetic position. We included these sequences in two rounds of analyses: one including a broad Elateriformia dataset to test placement at the superfamily/family level, and a second, including a richer, targeted sampling of presumed close relatives. Our results strongly support Cydistinae as sister to Phengodidae in a clade with Rhagophthalmidae. Based on our molecular phylogenetic results and examination of morphological characters, we hereby transfer the formerly unplaced Cydistinae into Phengodidae and provide diagnoses for the newly circumscribed Phengodidae, Cydistinae and Cydistus. Since both Phengodidae and Rhagophthalmidae have bioluminescent larvae and strongly neotenic females, similar features can be hypothesized for Cydistinae. Additionally, Cydistus minor is transferred to the new genus Microcydistus.


2019 ◽  
Vol 104 (1) ◽  
pp. 69-82 ◽  
Author(s):  
Mónica M. Carlsen ◽  
Thomas B. Croat

This study presents an evaluation of the currently accepted sectional classification of the genus Anthurium Schott (Araceae) in light of a recently published molecular phylogeny for the group. In general, disagreements between these two occur because many diagnostic morphological characters used in the sectional classification turned out to be highly homoplasious within Anthurium, with multiple independent gains or losses of seemingly similar morphologies in distantly related clades. A new sectional classification of Anthurium that more accurately represents species relationships and the evolutionary history of the genus is much needed, and here we propose the first steps toward it. Results from this study suggest that out of the 18 sections and two series recognized in Anthurium, only seven of these groups are monophyletic (i.e., sections Andiphilum (Schott) Croat, Calomystrium (Schott) Engl., Dactylophyllium (Schott) Engl., Leptanthurium (Schott) Engl., Polyphyllium Engl., Tetraspermium (Schott) Engl., and the newly recognized section Multinervia (Croat) Carlsen & Croat, previously a series within section Pachyneurium (Schott) Engl.). All other sections are either not monophyletic or their monophyly could not be accurately tested. A complete revision of the sectional classification of Anthurium will require a more comprehensive taxon sampling and a better supported molecular phylogeny.


Phytotaxa ◽  
2016 ◽  
Vol 255 (3) ◽  
pp. 181 ◽  
Author(s):  
NORMAN K.B. ROBSON

Completion of a detailed monograph of Hypericum using traditional methods has stimulated the publication of phylogenetic treatments of the genus using molecular methods. The relationships thereby revealed differ from those of the traditional account in several ways that are discussed here.       A key point of conflict concerns taxa that share a specific set of morphological characters, i.e. the ‘Elodes’ syndrome (pseudotubular corolla, sterile stamen fascicles, stamen filaments ± united in the fascicle and sometimes petal appendages), which was found to be paraphyletic in each molecular study. The various groups with this syndrome were shown to have arisen from various parts of Hypericum, apparently suddenly, probably as the result of a genetic switch, the action of which can also be reversed. The formerly segregated genera with this floral syndrome should therefore all be re-incorporated in Hypericum. This necessitates the re-establishment of one section, namely Hypericum sect. Elodea, and recognition of two new sections within Hypericum, namely Hypericum sect. Lianthus and Hypericum sect. Thornea, which are proposed here.       The remaining species have resolved in various places in recent molecular phylogenetic trees that differ from each other and from the classification adopted in the monograph. In particular, in molecular results the herbaceous species with ‘3’ (i.e. 2+2+1) stamen fascicles all form a single clade; whereas, in the traditional treatment adopted in the monograph, they form three distinct, distantly related groups.            In light of recent molecular studies, Hypericum is now interpreted to comprise two distinct groups (respectively mainly Old World and mainly New World) that differ in the presence or absence of dark (hypericin-containing) glands and in the arrangement of the stamen fascicles. These two clades are described as subgenera, with the New World clade named Hypericum subgenus Brathys. By drawing attention to this grouping, the molecular work has improved on the monograph.


Sign in / Sign up

Export Citation Format

Share Document