Molecular phylogenetic analyses and morphological variation point to taxonomic problems among four genera of parasitoid doryctine wasps (Hymenoptera : Braconidae)

2015 ◽  
Vol 29 (6) ◽  
pp. 591 ◽  
Author(s):  
Marco Gebiola ◽  
Antonio P. Garonna ◽  
Umberto Bernardo ◽  
Sergey A. Belokobylskij

Doryctinae (Hymenoptera : Braconidae) is a large and diverse subfamily of parasitic wasps that has received much attention recently, with new species and genera described and phylogenies based on morphological and/or molecular data that have improved higher-level classification and species delimitation. However, the status of several genera is still unresolved, if not controversial. Here we focus on two related groups of such genera, Dendrosoter Wesmael–Caenopachys Foerster and Ecphylus Foerster–Sycosoter Picard & Lichtenstein. We integrated morphological and molecular (COI and 28S–D2 genes) evidence to highlight, by phylogenetic analyses (maximum likelihood and Bayesian) and a posteriori morphological examination, previously overlooked variation, which is here illustrated and discussed. Monophyly of Dendrosoter and Caenopachys and the presence of synapomorphic morphological characters support synonymy of Caenopachys under Dendrosoter. Low genetic differentiation and high variability for putatively diagnostic morphological characters found in both C. hartigii (Ratzeburg) and C. caenopachoides (Ruschka) supports synonymy of D. caenopachoides under D. hartigii, syn. nov. Morphological and molecular evidence together also indicate independent generic status for Sycosoter, stat. rev., which is here resurrected. This work represents a further advancement in the framework of the ongoing effort to improve systematics and classification of the subfamily Doryctinae.

2019 ◽  
Vol 94 ◽  
Author(s):  
S.V. Shchenkov ◽  
S.A. Denisova ◽  
G.A. Kremnev ◽  
A.A. Dobrovolskij

Abstract The phylogenetic position of most xiphidiocercariae from subgroups Cercariae virgulae and Cercariae microcotylae remains unknown or unclear, even at the family level. In this paper, we studied the morphology and molecular phylogeny of 15 microcotylous and virgulate cercariae (11 new and four previously described ones). Based on morphological and molecular data, we suggested five distinct morphological types of xiphidiocercariae, which are a practical alternative to Cercariae virgulae and Cercariae microcotylae subgroups. Four of these types correspond to actual digenean taxa (Microphallidae, Lecithodendriidae, Pleurogenidae and Prosthogonimidae), while the fifth is represented by Cercaria nigrospora Wergun, 1957, which we classified on the basis of molecular data for the first time. We reassessed the relative importance of morphological characters used for the classification of virgulate and microcotylous cercariae, and discussed the main evolutionary trends within xiphidiocercariae. Now stylet cercariae can be reliably placed into several sub-taxa of Microphalloidea on the basis of their morphological features.


2021 ◽  
Vol 307 (2) ◽  
Author(s):  
Pau Carnicero ◽  
Núria Garcia-Jacas ◽  
Llorenç Sáez ◽  
Theophanis Constantinidis ◽  
Mercè Galbany-Casals

AbstractThe eastern Mediterranean basin hosts a remarkably high plant diversity. Historical connections between currently isolated areas across the Aegean region and long-distance dispersal events have been invoked to explain current distribution patterns of species. According to most recent treatments, at least two Cymbalaria species occur in this area, Cymbalaria microcalyx and C. longipes. The former comprises several intraspecific taxa, treated at different ranks by different authors based on morphological data, evidencing the need of a taxonomic revision. Additionally, some populations of C. microcalyx show exclusive morphological characters that do not match any described taxon. Here, we aim to shed light on the systematics of eastern Mediterranean Cymbalaria and to propose a classification informed by various sources of evidence. We performed molecular phylogenetic analyses using ITS, 3’ETS, ndhF and rpl32-trnL sequences and estimated the ploidy level of some taxa performing relative genome size measures. Molecular data combined with morphology support the division of traditionally delimited C. microcalyx into C. acutiloba, C. microcalyx and C. minor, corresponding to well-delimited nrDNA lineages. Furthermore, we propose to combine C. microcalyx subsp. paradoxa at the species level. A group of specimens previously thought to belong to Cymbalaria microcalyx constitute a well-defined phylogenetic and morphological entity and are described here as a new species, Cymbalaria spetae. Cymbalaria longipes is non-monophyletic, but characterized by being glabrous and diploid, unlike other eastern species. The nrDNA data suggest at least two dispersals from the mainland to the Aegean Islands, potentially facilitated by marine regressions.


2021 ◽  
Vol 99 (2) ◽  
pp. 398-412
Author(s):  
Marcelo R. Pace ◽  
Brenda Hernández-Hernández ◽  
Esteban M. Martínez Salas ◽  
Lúcia G. Lohmann ◽  
N. Ivalu Cacho

Background: Astianthus is a monospecific arborescent genus of Bignoniaceae that occur in the Pacific Coast of central Mexico and northern Central America, where it grows in dense populations along riversides. Its phylogenetic placement has remained controversial since Astianthus has unusual morphological characters such as a four-loculed ovary, and simple, pulvinate, verticillate leaves. Methods: Here we used three plastid markers ndhF, rbcL, and trnL-F, wood, and bark anatomical data to investigate the phylogenetic placement of Astianthus and assign it to one of Bignoniaceae’s main clades. Results: Our molecular phylogenetic analyses indicated that Astianthus belongs in tribe Tecomeae s.s., where other charismatic Neotropical Bignoniaceae genera such as Campsis and Tecoma are currently placed. Wood and bark anatomy support this placement, as Astianthus reunites a unique combination of features only known from members of Tecomeae s.s., such as storied axial parenchyma, the co-occurrence of homo- and heterocellular rays, septate fibers, and scattered phloem fibers in the bark. Conclusions: The placement of Astianthus within Tecomeae s.s. provides further support to previous proposals for the Neotropical origin of this Pantropical tribe.


2019 ◽  
Vol 94 ◽  
Author(s):  
A. Maldonado ◽  
R.O. Simões ◽  
J. São Luiz ◽  
S.F. Costa-Neto ◽  
R.V. Vilela

Abstract Nematodes of the genus Physaloptera are globally distributed and more than 100 species are known. Their life cycle involves insects, including beetles, cockroaches and crickets, as intermediate hosts. This study describes a new species of Physaloptera and reports molecular phylogenetic analyses to determine its relationships within the family Physalopteridae. Physaloptera amazonica n. sp. is described from the stomach of the caviomorph rodent Proechimys gardneri collected in the Amazon rainforest in the state of Acre, Brazil. The species is characterized by the male having the first and second pair of sessile papillae asymmetrically placed, lacking a median papilla-like protuberance between the third pairs of sessile papillae, differentiated by size and shape of the spicules, while females have four uterine branches. For both nuclear 18S rRNA and MT-CO1 gene-based phylogenies, we recovered Turgida sequences forming a clade nested within Physaloptera, thus making Physaloptera paraphyletic to the exclusion of Turgida, suggesting that the latter may have evolved from the former monodelphic ancestral state to a derived polydelphic state, or that some species of Physaloptera may belong to different genera. Relationships between most taxa within Physaloptera were poorly resolved in our phylogenies, producing multifurcations or a star phylogeny. The star-like pattern may be attributed to evolutionary processes where past simultaneous species diversification events took place. Physaloptera amazonica n. sp. formed an independent lineage, separately from the other species of Physaloptera, thus supporting the status of a new species. However, all molecular data suggested a closer relationship with other Neotropical species. In conclusion, we added a new species to this already largely diverse genus Physaloptera, bringing new insights to its phylogenetic relationships. Further analyses, adding more species and markers, should provide a better understanding of the evolutionary history of physalopterids.


2017 ◽  
Vol 31 (3) ◽  
pp. 317 ◽  
Author(s):  
Jesús A. Cruz-López ◽  
Oscar F. Francke

Systematic relationships among Laniatores have received considerable attention during the past few years. Many significant taxonomic changes have been proposed, particularly in the superfamily Gonyleptoidea. As part of this superfamily, the basalmost Stygnopsidae is the least known family. In order to propose the first total evidence phylogeny of the family, we produced four datasets: three molecular markers – partial nuclear 28S, mitochondrial ribosomal 16S, mitochondrial protein-encoding cytochrome c oxidase subunit I; and 72 morphological characters. With these data, we performed three different phylogenetic analyses: (1) Bayesian Inference with molecular data, and (2) Bayesian Inference and (3) Maximum Likelihood using combined data. Our results are congruent: a monophyletic Stygnopsidae subdivided into two major clades: Stygnopsinae and Karosinae, subfam. nov. The following genera are redefined: Stygnopsis, Hoplobunus and Serrobunus stat. rev. The following taxa are described: Iztlina venefica, gen. nov., sp. nov. and Tonalteca, gen. nov. Additionally, the following changes are proposed: Serrobunus queretarius (Šilhavý, 1974), comb. nov., Stygnopsis apoalensis (Goodnight & Goodnight, 1973), comb. nov., Stygnopsis mexicana (Roewer, 1915), comb. nov., Stygnopsis oaxacensis (Goodnight & Goodnight, 1973), comb. nov., and Tonalteca spinooculorum (Goodnight & Goodnight, 1973), comb. nov. We also discuss the status of the genera Isaeus stat. rev. and Mexotroglinus. Finally, we discuss the evolution of male genitalia and convergence of selected homoplastic diagnostic characters.


Phytotaxa ◽  
2018 ◽  
Vol 345 (1) ◽  
pp. 35 ◽  
Author(s):  
BIAO XU ◽  
UWE BRAUN ◽  
SHANHE ZHANG ◽  
HUI YANG ◽  
ZHI CAO ◽  
...  

Bauhinia species are popular ornamental and medicinal plants with a pantropical distribution. In December 2016, powdery mildew symptoms were found on B. blakeana and B. purpurea in Guangdong, China. Based on ITS and 28S rDNA sequences, as well as morphological characters, the powdery mildew was identified as Erysiphe lespedezae. Previous records of powdery mildews on Bauhinia spp. are discussed. Based on morphological and molecular phylogenetic analyses of type material, Pseudoidium caesalpiniacearum is reduced to synonymy with E. lespedezae. To our best knowledge, this is the first report of E. lespedezae causing powdery mildew on B. purpurea in China, and B. blakeana as a new host. A detailed morphological description and molecular data are provided herein.


Neodiversity ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 56-94
Author(s):  
Luciano P. Queiroz ◽  
◽  
Ana C.S. Oliveira ◽  
Cristiane Snak

The Galactia clade is one of three major lineages of the papilionoid legume tribe Diocleae. It comprises eight genera and approximately 140 species almost entirely restricted to the Americas. Establishing stable generic boundaries within this clade has been a challenge because of its tortuous taxonomic history and the broad polyphyly of the genera of the so-called Galactia-Camptosema-Collaea complex. Previous molecular phylogenetic studies revealed some well-supported lineages, but did not advance towards any new taxonomic arrangements. We carried out maximum parsimony and Bayesian phylogenetic analyses of a combined dataset including our previously published multilocus molecular data (nrITS and ETS and plastid trnK/matK and trnT-Y regions) and 82 morphological characters. The resulting topologies largely concur with those previously reported based on molecular data only, where Camptosema and Galactia appear as broadly polyphyletic, with species scattered among five (Camptosema) and seven (Galactia) of the twelve lineages that are newly recognized here at genus level. We are therefore proposing the following new taxonomic rearrangements within the Galactia clade: descriptions of the new genera Caetangil, Cerradicola, Mantiqueira, and Nanogalactia; resurrection of Betencourtia; and the subsuming of Neorudolphia into Rhodopis and of Camptosema sect. Macropetalum into Cratylia.


Phytotaxa ◽  
2018 ◽  
Vol 356 (3) ◽  
pp. 181
Author(s):  
FABIO RENATO BORGES ◽  
ORLANDO NECCHI JR

The genus Nitella is the most species-rich within the Charales. Brazilian studies on the genus are relatively scarce and consist of floristic surveys, lacking modern and more precise information. This investigation applied scanning electron microscopy to analyze the oospore wall and molecular data associated with traditional morphological characters to analyze forty-two populations of Nitella from the midwest and southeast regions of Brazil. Forty-two new sequences of rbcL, twelve of ITS1 and twenty-three of ITS2 were generated for the five species recognized in this study: Nitella acuminata A. Braun ex Wallman, Nitella axillaris A. Braun, Nitella elegans B. P. Pal, Nitella flagellifera J. Groves & G. O. Allen and Nitella microcarpa A. Braun.. Phylogenetic analyses of sequences of these three markers were congruent in that they grouped our species with others from different countries to form five clades. Our results on ultrastrucure of the oospore wall were consistent with previous studies for the same species from other regions of the world. The data reinforced the conclusion that the use of ornamentation of oospore wall may be extremely useful for the construction of a natural system for Characeae at section level. Molecular evidence, reinforced by morphological data, for the Brazilian material analyzed suggests that Nitella subglomerata A. Braun and Nitella gollmeriana A. Braun could be synonymys of Nitella acuminata; and Nitella axilliformis K. Imahori appears to be the same as Nitella axillaris. However, no formal proposition was made considering that type specimens were not analyzed and these observations were based on a relatively small number of samples strictly from Brazil. We showed that even among geographically distant populations, such as from other continents, of some Nitella species, the degree of identity among DNA sequences was high.


Phytotaxa ◽  
2020 ◽  
Vol 437 (2) ◽  
pp. 51-59
Author(s):  
QIAN-XIN GUAN ◽  
CHAO-MAO LIU ◽  
TANG-JIE ZHAO ◽  
CHANG-LIN ZHAO

A new wood-inhabiting fungal species, Heteroradulum yunnanensis, is proposed based on a combination of morphological features and molecular evidence. The species is characterized by an annual growth habit, resupinate basidiomata with odontoid hymenial surface (50–100 µm long), more or less pronounced yellow stains in older basidiomata, a monomitic hyphal system with thin-walled, clamped generative hyphae and two to three-celled basidia and cylindrical, hyaline, thin-walled, smooth, IKI–, CB– basidiospores measuring as 17–24 ×5–8 µm. Sequences of ITS and LSU nrRNA gene regions of the studied samples were generated, and phylogenetic analyses were performed with maximum likelihood, maximum parsimony and bayesian inference methods. The phylogenetic analyses based on molecular data of ITS+nLSU sequences showed that Heteroradulum yunnanensis formed a monophyletic lineage with a strong support (100% BS, 100% BP, 1.00 BPP) and then grouped with H. adnatum.


Phytotaxa ◽  
2018 ◽  
Vol 373 (3) ◽  
pp. 184 ◽  
Author(s):  
SHAN SHEN ◽  
XIANG MA ◽  
TAI-MIN XU ◽  
CHANG-LIN ZHAO

A new wood-inhabiting fungus, Phlebia ailaoshanensis, is proposed based on a combination of morphological features and molecular evidence. The species is characterized by an annual growth habit, resupinate basidiocarps with tuberculate to phlebioid hymenial surface, a monomitic hyphal system with slightly thick-walled generative hyphae bearing simple septa, IKI–, CB– and ellipsoid, hyaline, thin-walled, smooth, IKI–, CB– basidiospores measuring as 5.7–8.5 × 3–4.3 µm. Sequences of ITS and LSU nrRNA gene regions of the studied samples were generated, and phylogenetic analyses were performed with maximum likelihood, maximum parsimony and bayesian inference methods. The phylogenetic analyses based on molecular data of ITS+nLSU sequences showed that P. ailaoshanensis belonged to the Meruliaceae and nested into the phlebioid clade. Further investigation was obtained for more representative taxa in the Phlebia based on ITS+nLSU sequences, in which the result demonstrated that the species P. ailaoshanensis formed a monophyletic lineage with a strong support (100% BS, 100% BP, 1.00 BPP) and then grouped with P. acanthocystis, P. chrysocreas, P. ludoviciana, P. subcretacea and P. uda.


Sign in / Sign up

Export Citation Format

Share Document