scholarly journals RNA editing of CAPS1 regulates synaptic vesicle organization, release and retrieval

2017 ◽  
Author(s):  
Randi J. Ulbricht ◽  
Sarah J. Sun ◽  
Claire E. DelBove ◽  
Kristina E. Kitko ◽  
Saad C. Rehman ◽  
...  

ABSTRACTCalcium-dependent activator protein for secretion 1 (CAPS1) facilitates the docking and priming of synaptic and dense core vesicles. A conserved hairpin structure in the CAPS1 pre-mRNA allows an post-transcriptional adenosine-to-inosine RNA editing event to alter a genomically-encoded glutamate to a glycine codon. Functional comparisons of CAPS1 protein isoforms in primary hippocampal neurons show that elevation of edited CAPS1 isoforms facilitates presynaptic vesicle clustering and turnover. Conversely, non-edited CAPS1 isoforms slow evoked release, increase spontaneous fusion, and loosen the clustering of synaptic vesicles. Therefore, CAPS1 editing promotes organization of the vesicle pool in a way that is beneficial for evoked release, while non-edited isoforms promote more lax vesicle organization that widens distribution, attenuates evoked release and eases the control of spontaneous fusion. Overall, RNA editing of CAPS1 is a mechanism to fine tune neurotransmitter release.IMPACT STATEMENTPost-transcriptional RNA editing of CAPS1 is a mechanism to regulate neurotransmitter release from synaptic vesicles.


2012 ◽  
Vol 107 (9) ◽  
pp. 2430-2441 ◽  
Author(s):  
Xiaoyu Peng ◽  
Thomas D. Parsons ◽  
Rita J. Balice-Gordon

We used synaptophysin-pHluorin expressed in hippocampal neurons to address how functional properties of terminals, namely, evoked release, total vesicle pool size, and release fraction, vary spatially across individual axon arbors. Consistent with previous reports, over short arbor distances (∼100 μm), evoked release was spatially heterogeneous when terminals contacted different postsynaptic dendrites or neurons. Regardless of the postsynaptic configuration, the evoked release and total vesicle pool size spatially covaried, suggesting that the fraction of synaptic vesicles available for release (release fraction) was similar over short distances. Evoked release and total vesicle pool size were highly correlated with the amount of NMDA receptors and PSD-95 in postsynaptic specialization. However, when individual axons were followed over longer distances (several hundred micrometers), a significant increase in evoked release was observed distally that was associated with an increased release fraction in distal terminals. The increase in distal release fraction can be accounted for by changes in individual vesicle release probability as well as readily releasable pool size. Our results suggest that for a single axon arbor, presynaptic strength indicated by evoked release over short distances is correlated with heterogeneity in total vesicle pool size, whereas over longer distances presynaptic strength is correlated with the spatial modulation of release fraction. Thus the mechanisms that determine synaptic strength differ depending on spatial scale.



2002 ◽  
Vol 88 (1) ◽  
pp. 98-106 ◽  
Author(s):  
Ruth Heidelberger ◽  
Peter Sterling ◽  
Gary Matthews

Synaptic terminals of retinal bipolar neurons contain a pool of readily releasable synaptic vesicles that undergo rapid calcium-dependent release. ATP hydrolysis is required for the functional refilling of this vesicle pool. However, it was unclear which steps required ATP hydrolysis: delivery of vesicles to their anatomical release sites or preparation of synaptic vesicles and/or the secretory apparatus for fusion. To address this, we dialyzed single synaptic terminals with ATP or the poorly hydrolyzable analogue ATP-γS and examined the size of the releasable pool, refilling of the releasable pool, and the number of vesicles at anatomical active zones. After minutes of dialysis with ATP-γS, vesicles already in the releasable pool could still be discharged. This pool was not functionally refilled despite the fact that its anatomical correlate, the number of synaptic vesicles tethered to active zone synaptic ribbons, was completely normal. We conclude 1) because the existing releasable pool is stable during prolonged inhibition of ATP hydrolysis, whereas entry into the functional pool is blocked, a vesicle on entering the pool will tend to remain there until it fuses; 2) because the anatomical pool is unaffected by inhibition of ATP hydrolysis, failure to refill the functional pool is not caused by failure of vesicle movement; 3) local vesicle movements important for pool refilling and fusion are independent of conventional ATP-dependent motor proteins; and 4) ATP hydrolysis is required for the biochemical transition of vesicles and/or release sites to fusion-competent status.



2003 ◽  
Vol 161 (3) ◽  
pp. 609-624 ◽  
Author(s):  
Tanja Wucherpfennig ◽  
Michaela Wilsch-Bräuninger ◽  
Marcos González-Gaitán

During constitutive endocytosis, internalized membrane traffics through endosomal compartments. At synapses, endocytosis of vesicular membrane is temporally coupled to action potential–induced exocytosis of synaptic vesicles. Endocytosed membrane may immediately be reused for a new round of neurotransmitter release without trafficking through an endosomal compartment. Using GFP-tagged endosomal markers, we monitored an endosomal compartment in Drosophila neuromuscular synapses. We showed that in conditions in which the synaptic vesicles pool is depleted, the endosome is also drastically reduced and only recovers from membrane derived by dynamin-mediated endocytosis. This suggests that membrane exchange takes place between the vesicle pool and the synaptic endosome. We demonstrate that the small GTPase Rab5 is required for endosome integrity in the presynaptic terminal. Impaired Rab5 function affects endo- and exocytosis rates and decreases the evoked neurotransmitter release probability. Conversely, Rab5 overexpression increases the release efficacy. Therefore, the Rab5-dependent trafficking pathway plays an important role for synaptic performance.



eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Mahdokht Kohansal-Nodehi ◽  
John JE Chua ◽  
Henning Urlaub ◽  
Reinhard Jahn ◽  
Dominika Czernik

Neurotransmitter release is mediated by the fast, calcium-triggered fusion of synaptic vesicles with the presynaptic plasma membrane, followed by endocytosis and recycling of the membrane of synaptic vesicles. While many of the proteins governing these processes are known, their regulation is only beginning to be understood. Here we have applied quantitative phosphoproteomics to identify changes in phosphorylation status of presynaptic proteins in resting and stimulated nerve terminals isolated from the brains of Wistar rats. Using rigorous quantification, we identified 252 phosphosites that are either up- or downregulated upon triggering calcium-dependent exocytosis. Particularly pronounced were regulated changes of phosphosites within protein constituents of the presynaptic active zone, including bassoon, piccolo, and RIM1. Additionally, we have mapped kinases and phosphatases that are activated upon stimulation. Overall, our study provides a snapshot of phosphorylation changes associated with presynaptic activity and provides a foundation for further functional analysis of key phosphosites involved in presynaptic plasticity.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Javier Emperador-Melero ◽  
Man Yan Wong ◽  
Shan Shan H. Wang ◽  
Giovanni de Nola ◽  
Hajnalka Nyitrai ◽  
...  

AbstractThe active zone of a presynaptic nerve terminal defines sites for neurotransmitter release. Its protein machinery may be organized through liquid–liquid phase separation, a mechanism for the formation of membrane-less subcellular compartments. Here, we show that the active zone protein Liprin-α3 rapidly and reversibly undergoes phase separation in transfected HEK293T cells. Condensate formation is triggered by Liprin-α3 PKC-phosphorylation at serine-760, and RIM and Munc13 are co-recruited into membrane-attached condensates. Phospho-specific antibodies establish phosphorylation of Liprin-α3 serine-760 in transfected cells and mouse brain tissue. In primary hippocampal neurons of newly generated Liprin-α2/α3 double knockout mice, synaptic levels of RIM and Munc13 are reduced and the pool of releasable vesicles is decreased. Re-expression of Liprin-α3 restored these presynaptic defects, while mutating the Liprin-α3 phosphorylation site to abolish phase condensation prevented this rescue. Finally, PKC activation in these neurons acutely increased RIM, Munc13 and neurotransmitter release, which depended on the presence of phosphorylatable Liprin-α3. Our findings indicate that PKC-mediated phosphorylation of Liprin-α3 triggers its phase separation and modulates active zone structure and function.



2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Eder Gambeta ◽  
Maria A. Gandini ◽  
Ivana A. Souza ◽  
Laurent Ferron ◽  
Gerald W. Zamponi

AbstractA novel missense mutation in the CACNA1A gene that encodes the pore forming α1 subunit of the CaV2.1 voltage-gated calcium channel was identified in a patient with trigeminal neuralgia. This mutation leads to a substitution of proline 2455 by histidine (P2455H) in the distal C-terminus region of the channel. Due to the well characterized role of this channel in neurotransmitter release, our aim was to characterize the biophysical properties of the P2455H variant in heterologously expressed CaV2.1 channels. Whole-cell patch clamp recordings of wild type and mutant CaV2.1 channels expressed in tsA-201 cells reveal that the mutation mediates a depolarizing shift in the voltage-dependence of activation and inactivation. Moreover, the P2455H mutant strongly reduced calcium-dependent inactivation of the channel that is consistent with an overall gain of function. Hence, the P2455H CaV2.1 missense mutation alters the gating properties of the channel, suggesting that associated changes in CaV2.1-dependent synaptic communication in the trigeminal system may contribute to the development of trigeminal neuralgia.





Sign in / Sign up

Export Citation Format

Share Document