Paratope Prediction using Convolutional and Recurrent Neural Networks
AbstractAntibodies play an essential role in the immune system of vertebrates and are vital tools in research and diagnostics. While hypervariable regions of antibodies, which are responsible for binding, can be readily identified from their amino acid sequence, it remains challenging to accurately pinpoint which amino acids will be in contact with the antigen (the paratope). In this work, we present a sequence-based probabilistic machine learning algorithm for paratope prediction, named Parapred. Parapred uses a deep-learning architecture to leverage features from both local residue neighbourhoods and across the entire sequence. The method outperforms the current state-of-the-art methodology, and only requires a stretch of amino acid sequence corresponding to a hypervariable region as an input, without any information about the antigen. We further show that our predictions can be used to improve both speed and accuracy of a rigid docking algorithm. The Parapred method is freely available at https://github.com/eliberis/parapred for download.