scholarly journals Brain-behavior patterns define a dimensional biotype in medication-naïve adults with attention-deficit hyperactivity disorder

2017 ◽  
Author(s):  
Hsiang-Yuan Lin ◽  
Luca Cocchi ◽  
Andrew Zalesky ◽  
Jinglei Lv ◽  
Alistair Perry ◽  
...  

AbstractBackgroundChildhood-onset attention-deficit hyperactivity disorder (ADHD) in adults is clinically heterogeneous and commonly presents with different patterns of cognitive deficits. It is unclear if this clinical heterogeneity expresses a dimensional or categorical difference in ADHD.MethodsWe first studied differences in functional connectivity in multi-echo resting-state functional magnetic resonance imaging (rs-fMRI) acquired from 80 medication-naïve adults with ADHD and 123 matched healthy controls. We then used canonical correlation analysis (CCA) to identify latent relationships between symptoms and patterns of altered functional connectivity (dimensional biotype) in patients. Clustering methods were implemented to test if the individual associations between resting-state brain connectivity and symptoms reflected a non-overlapping categorical biotype.ResultsAdults with ADHD showed stronger functional connectivity compared to healthy controls, predominantly between the default-mode, cingulo-opercular and subcortical networks. CCA identified a single mode of brain-symptom co-variation, corresponding to an ADHD dimensional biotype. This dimensional biotype is characterized by a unique combination of altered connectivity correlating with symptoms of hyperactivity-impulsivity, inattention, and intelligence. Clustering analyses did not support the existence of distinct categorical biotypes of adult ADHD.ConclusionsOverall, our data advance a novel finding that the reduced functional segregation between default-mode and cognitive control networks supports a clinically important dimensional biotype of childhood-onset adult ADHD. Despite the heterogeneity of its presentation, our work suggests that childhood-onset adult ADHD is a single disorder characterized by dimensional brain-symptom mediators.

2018 ◽  
Vol 48 (14) ◽  
pp. 2399-2408 ◽  
Author(s):  
Hsiang-Yuan Lin ◽  
Luca Cocchi ◽  
Andrew Zalesky ◽  
Jinglei Lv ◽  
Alistair Perry ◽  
...  

AbstractBackgroundChildhood-onset attention-deficit hyperactivity disorder (ADHD) in adults is clinically heterogeneous and commonly presents with different patterns of cognitive deficits. It is unclear if this clinical heterogeneity expresses a dimensional or categorical difference in ADHD.MethodsWe first studied differences in functional connectivity in multi-echo resting-state functional magnetic resonance imaging (rs-fMRI) acquired from 80 medication-naïve adults with ADHD and 123 matched healthy controls. We then used canonical correlation analysis (CCA) to identify latent relationships between symptoms and patterns of altered functional connectivity (dimensional biotype) in patients. Clustering methods were implemented to test if the individual associations between resting-state brain connectivity and symptoms reflected a non-overlapping categorical biotype.ResultsAdults with ADHD showed stronger functional connectivity compared to healthy controls, predominantly between the default-mode, cingulo-opercular and subcortical networks. CCA identified a single mode of brain–symptom co-variation, corresponding to an ADHD dimensional biotype. This dimensional biotype is characterized by a unique combination of altered connectivity correlating with symptoms of hyperactivity-impulsivity, inattention, and intelligence. Clustering analyses did not support the existence of distinct categorical biotypes of adult ADHD.ConclusionsOverall, our data advance a novel finding that the reduced functional segregation between default-mode and cognitive control networks supports a clinically important dimensional biotype of childhood-onset adult ADHD. Despite the heterogeneity of its presentation, our work suggests that childhood-onset adult ADHD is a single disorder characterized by dimensional brain–symptom mediators.


2019 ◽  
pp. 1-11
Author(s):  
Valentino Antonio Pironti ◽  
Deniz Vatansever ◽  
Barbara Jacquelyn Sahakian

Abstract Background Attention-deficit/hyperactivity disorder (ADHD) is a developmental condition that often persists into adulthood with extensive negative consequences on quality of life. Despite emerging evidence indicating the genetic basis of ADHD, investigations into the familial expression of latent neurocognitive traits remain limited. Methods In a group of adult ADHD probands (n = 20), their unaffected first-degree relatives (n = 20) and typically developing control participants (n = 20), we assessed endophenotypic alterations in the default mode network (DMN) connectivity during resting-state functional magnetic resonance imaging in relation to cognitive performance and clinical symptoms. In an external validation step, we also examined the dimensional nature of this neurocognitive trait in a sample of unrelated healthy young adults (n = 100) from the Human Connectome Project (HCP). Results The results illustrated reduced anti-correlations between the posterior cingulate cortex/precuneus and right middle frontal gyrus that was shared between adult ADHD probands and their first-degree relatives, but not with healthy controls. The observed connectivity alterations were linked to higher ADHD symptoms that was mediated by performance in a sustained attention task. Moreover, this brain-based neurocognitive trait dimensionally explained ADHD symptom variability in the HCP sample. Conclusions Alterations in the default mode connectivity may represent a dimensional endophenotype of ADHD, hence a significant aspect of the neuropathophysiology of this disorder. As such, brain network organisation can potentially be employed as an important neurocognitive trait to enhance statistical power of genetic studies in ADHD and as a surrogate efficacy endpoint in the development of novel pharmaceuticals.


2016 ◽  
Vol 33 (S1) ◽  
pp. S357-S357 ◽  
Author(s):  
V. Pereira ◽  
P. de Castro-Manglano ◽  
C. Soutullo Esperon

IntroductionAttention deficit hyperactivity disorder (ADHD) is a challenge in child and adolescent psychiatry. In the recent decades many studies with longitudinal designs have used neuroimaging with ADHD patients, suggesting its neurodevelopmental origin.ObjectivesStudy the findings of neuroimaging (MRI, fMRI, DTI, PET) techniques on ADHD patients from a longitudinal point of view, looking also for the potential influence of treatments and other predictors (i.e. genetics).AimsTo provide a global perspective of all the recent findings on ADHD patients with the neuroimaging technics, focusing on longitudinal measurements of the changes in brain development.MethodsWe conducted a review of the literature in the databases Pubmed and ScienceDirect (terms ADHD, neuroimaging, MRI, fMRI, DTI, PET, functional connectivity, metilphenidate and cortical thickness). We focused on studies using neuroimaging techniques with ADHD patients, looking at their populations, methodologies and results.ResultsThe studies found abnormalities in the structure of grey matter, activity and brain connectivity in many neural networks, with particular involvement of the fronto-parietal and Default Mode Network. There is also convergent evidence for white matter pathology and disrupted anatomical connectivity in ADHD. In addition, dysfunctional connectivity during rest and during cognitive tasks has been demonstrated.ConclusionsThis evidence describe ADHD as a brain development disorder, with delays and disruptions in the global development of the central nervous system that compromises grey and white matters, most evident in the prefrontal cortex, parietal and posterior cingulate cortices, as well as basal ganglia, damaging activity and structural and functional connectivity of various brain networks, especially the fronto-striato-parietal and default mode network.Disclosure of interestThe authors have not supplied their declaration of competing interest.


2018 ◽  
Author(s):  
Anzar Abbas ◽  
Yasmine Bassil ◽  
Shella Keilholz

Individuals with attention-deficit/hyperactivity disorder have been shown to have disrupted functional connectivity in the default mode and task positive networks. Traditional fMRI analysis techniques that focus on static changes in functional connectivity have been successful in identifying differences between healthy controls and individuals with ADHD. However, such analyses are unable to explain the mechanisms behind the functional connectivity differences observed. Here, we study dynamic changes in functional connectivity in individuals with ADHD through investigation of quasi-periodic patterns (QPPs). QPPs are reliably recurring low-frequency spatiotemporal patterns in the brain linked to infra-slow electrical activity. They have been shown to contribute to functional connectivity observed through static analysis techniques. We find that QPPs contribute to functional connectivity specifically in regions that are disrupted during ADHD. Individuals with ADHD also show differences in the spatiotemporal pattern observed within the QPPs. This difference results in a weaker contribution of QPPs to functional connectivity in the default mode and task positive networks. We conclude that quasi-periodic patterns provide insight into the mechanisms behind functional connectivity differences seen in individuals with ADHD. This allows for a better understanding of the etiology of the disorder and development of effective treatments.


2021 ◽  
Author(s):  
Lu Liu ◽  
Di Chen ◽  
Fang Huang ◽  
Tianye Jia ◽  
Meirong Pan ◽  
...  

Adults with attention-deficit/hyperactivity disorder (ADHD), as an extreme-phenotype of ADHD, is still facing problems of inconsistency and undeciphered mechanisms for its neuropathology. To address this matter, our present study performed connecotome-wide voxel-based analyses with the resting-state fMRI data of 84 adults with ADHD and 89 healthy controls. We found that functional connectivity patterns of the left precuneus and the left middle temporal significantly altered in ADHD populations serving as potential neural biomarkers to distinguish ADHD with healthy controls, with subsequent seed-based analysis revealing the dysfunction of functional connections both intra- and inter- default mode and attention networks, among which middle temporal gyrus plays the key role of bridge linking the default mode and attention networks. After cognitive behavioral therapy, two of these ADHD-altered functional connections ameliorated accompanied with improvement of ADHD core symptoms. Additionally, imaging genetic analyses also revealed close relationships between the observed brain functional alterations and ADHD-risk genes. Taken together, our findings suggested the interference of default mode on attention networks in adults with ADHD, which would be severing as a potential biomarker for both ADHD pathogenesis and treatment effects.


Sign in / Sign up

Export Citation Format

Share Document