connectivity patterns
Recently Published Documents


TOTAL DOCUMENTS

733
(FIVE YEARS 282)

H-INDEX

54
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Fatemeh Tabassi Mofrad ◽  
Niels O. Schiller

The cytoarchitectonically tripartite organization of the inferior parietal cortex (IPC) into the rostral, the middle and the caudal clusters has been generally ignored when associating different functions to this part of the cortex, resulting in inconsistencies about how IPC is understood. In this study, we investigated the patterns of functional connectivity of the caudal IPC in a task requiring cognitive control of language, using multiband EPI. This part of the cortex demonstrated functional connectivity patterns dissimilar to a cognitive control area and at the same time the caudal IPC showed negative functional associations with both task-related brain areas and the precuneus cortex, which is active during resting state. We found evidence suggesting that the traditional categorization of different brain areas into either task-related or resting state-related networks cannot accommodate the functions of the caudal IPC. This underlies the hypothesis about a modulating cortical area proposing that its involvement in task performance, in a modulating manner, is marked by deactivation in the patterns of functional associations with parts of the brain that are recognized to be involved in doing a task, proportionate to task difficulty; however, their patterns of functional connectivity in some other respects do not correspond to the resting state-related parts of the cortex.


2022 ◽  
Vol 13 ◽  
Author(s):  
Maite Aznárez-Sanado ◽  
Luis Eudave ◽  
Martín Martínez ◽  
Elkin O. Luis ◽  
Federico Villagra ◽  
...  

The human brain undergoes structural and functional changes across the lifespan. The study of motor sequence learning in elderly subjects is of particularly interest since previous findings in young adults might not replicate during later stages of adulthood. The present functional magnetic resonance imaging (fMRI) study assessed the performance, brain activity and functional connectivity patterns associated with motor sequence learning in late middle adulthood. For this purpose, a total of 25 subjects were evaluated during early stages of learning [i.e., fast learning (FL)]. A subset of these subjects (n = 11) was evaluated after extensive practice of a motor sequence [i.e., slow learning (SL) phase]. As expected, late middle adults improved motor performance from FL to SL. Learning-related brain activity patterns replicated most of the findings reported previously in young subjects except for the lack of hippocampal activity during FL and the involvement of cerebellum during SL. Regarding functional connectivity, precuneus and sensorimotor lobule VI of the cerebellum showed a central role during improvement of novel motor performance. In the sample of subjects evaluated, connectivity between the posterior putamen and parietal and frontal regions was significantly decreased with aging during SL. This age-related connectivity pattern may reflect losses in network efficiency when approaching late adulthood. Altogether, these results may have important applications, for instance, in motor rehabilitation programs.


2021 ◽  
Author(s):  
Lukas Roell

Schizophrenia is accompanied by widespread alterations in static functional connectivity associated with symptom severity and cognitive deficits. Improvements in aerobic fitness have been demonstrated to ameliorate symptomatology and cognition in people with schizophrenia, but the intermediary role of macroscale connectivity patterns remains unknown. Therefore, we aim to explore the relation between aerobic fitness and the functional connectome in individuals with schizophrenia. Further, we investigate clinical and cognitive relevance of the identified fitness-connectivity links. 58 patients with schizophrenia were included in the resting-state fMRI analysis. Multilevel Bayesian partial correlations between aerobic fitness and functional connections across the whole brain as well as between static functional connectivity patterns and clinical and cognitive outcome were performed. Preliminary causal inferences were enabled based on a mediation analysis. Static functional connectivity between the subcortical nuclei and the cerebellum as well as between temporal seeds mediated the attenuating impact of aerobic fitness on total symptom severity. Functional connections between cerebellar seeds affected the positive link between aerobic fitness and global cognition, while the functional interplay between central and limbic seeds drove the beneficial relation between aerobic fitness and emotion recognition. The current study provides first insights into the interactions between aerobic fitness, the functional connectome and clinical and cognitive outcome in people with schizophrenia, but results have to be interpreted carefully. Further interventional aerobic exercise studies are needed in order to replicate the current findings and to enable conclusive causal inferences.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Jahaziel Molina-Del-Rio ◽  
Rosa M. Hidalgo-Aguirre ◽  
Alondra Camacho-Vázquez ◽  
María G. Ayón-Rubio

2021 ◽  
Vol 15 ◽  
Author(s):  
Torben Noto ◽  
Guangyu Zhou ◽  
Qiaohan Yang ◽  
Gregory Lane ◽  
Christina Zelano

Three subregions of the amygdala receive monosynaptic projections from the olfactory bulb, making them part of the primary olfactory cortex. These primary olfactory areas are located at the anterior-medial aspect of the amygdala and include the medial amygdala (MeA), cortical amygdala (CoA), and the periamygdaloid complex (PAC). The vast majority of research on the amygdala has focused on the larger basolateral and basomedial subregions, which are known to be involved in implicit learning, threat responses, and emotion. Fewer studies have focused on the MeA, CoA, and PAC, with most conducted in rodents. Therefore, our understanding of the functions of these amygdala subregions is limited, particularly in humans. Here, we first conducted a review of existing literature on the MeA, CoA, and PAC. We then used resting-state fMRI and unbiased k-means clustering techniques to show that the anatomical boundaries of human MeA, CoA, and PAC accurately parcellate based on their whole-brain resting connectivity patterns alone, suggesting that their functional networks are distinct, relative both to each other and to the amygdala subregions that do not receive input from the olfactory bulb. Finally, considering that distinct functional networks are suggestive of distinct functions, we examined the whole-brain resting network of each subregion and speculated on potential roles that each region may play in olfactory processing. Based on these analyses, we speculate that the MeA could potentially be involved in the generation of rapid motor responses to olfactory stimuli (including fight/flight), particularly in approach/avoid contexts. The CoA could potentially be involved in olfactory-related reward processing, including learning and memory of approach/avoid responses. The PAC could potentially be involved in the multisensory integration of olfactory information with other sensory systems. These speculations can be used to form the basis of future studies aimed at clarifying the olfactory functions of these under-studied primary olfactory areas.


2021 ◽  
Author(s):  
M. Ángeles Serrano ◽  
Marián Boguñá

Real networks comprise from hundreds to millions of interacting elements and permeate all contexts, from technology to biology to society. All of them display non-trivial connectivity patterns, including the small-world phenomenon, making nodes to be separated by a small number of intermediate links. As a consequence, networks present an apparent lack of metric structure and are difficult to map. Yet, many networks have a hidden geometry that enables meaningful maps in the two-dimensional hyperbolic plane. The discovery of such hidden geometry and the understanding of its role have become fundamental questions in network science giving rise to the field of network geometry. This Element reviews fundamental models and methods for the geometric description of real networks with a focus on applications of real network maps, including decentralized routing protocols, geometric community detection, and the self-similar multiscale unfolding of networks by geometric renormalization.


2021 ◽  
Vol 17 (S1) ◽  
Author(s):  
Lorenzo Pini ◽  
Siemon de Lange ◽  
Francesca B Pizzini ◽  
Ilaria Boscolo Galazzo ◽  
Rosa Manenti ◽  
...  

NeuroImage ◽  
2021 ◽  
pp. 118800
Author(s):  
Heini Saarimäki ◽  
Enrico Glerean ◽  
Dmitry Smirnov ◽  
Henri Mynttinen ◽  
Iiro P. Jääskeläinen ◽  
...  

2021 ◽  
Author(s):  
Javier Rasero ◽  
Richard Betzel ◽  
Amy Isabella Sentis ◽  
Thomas E. Kraynak ◽  
Peter J. Gianaros ◽  
...  

There is an ongoing debate as to whether cognitive processes arise from a group of functionally specialized brain modules (modularism) or as the result of a distributed nonlinear process (dynamical systems theory). The former predicts that tasks that recruit similar brain areas should have an equivalent degree of similarity in their connectivity. The latter allows for differential connectivity, even when the areas recruited are largely the same. Here we evaluated both views by comparing activation and connectivity patterns from a large sample of healthy subjects (N=242) that performed two executive control tasks, color-word Stroop task and Multi-Source Interference Task (MSIT), known to recruit similar brain areas. Using a measure of instantaneous connectivity based on edge time series as outcome variables, we estimated task-related network profiles as connectivity changes between incongruent and congruent information conditions. The degree of similarity of such profiles at the group level between both tasks was substantially smaller than their overlapping activation responses. A similar finding was observed at the subject level and when employing a different method for defining task-related connectivity. Our results are consistent with the perspective of the brain as a dynamical system, suggesting that task representations should be understood at both node and edge (connectivity) levels.


Sign in / Sign up

Export Citation Format

Share Document