scholarly journals Synaptic co-transmission of acetylcholine and GABA regulates hippocampal states

2017 ◽  
Author(s):  
Virág T. Takács ◽  
Csaba Cserép ◽  
Dániel Schlingloff ◽  
Balázs Pósfai ◽  
András Szőnyi ◽  
...  

SummaryThe basal forebrain cholinergic system is widely assumed to control cortical functions via non-synaptic transmission of a single neurotransmitter, acetylcholine. Yet, using immune-electron tomographic, molecular anatomical, optogenetic and physiological techniques, we find that mouse hippocampal cholinergic terminals invariably establish synapses and their vesicles dock at synapses only. We demonstrate that these synapses do not co-release but co-transmit GABA and acetylcholine via different vesicles, whose release is triggered by distinct calcium channels. This co-transmission evokes fast composite postsynaptic potentials, which are mutually cross-regulated by presynaptic auto-receptors and display different short-term plasticity. The GABAergic component alone effectively suppresses hippocampal sharp wave-ripples and epileptiform activity. The synaptic nature of the forebrain cholinergic system with differentially regulated, fast, GABAergic and cholinergic co-transmission suggests a hitherto unrecognized level of synaptic control over cortical states. This novel model of hippocampal cholinergic neurotransmission could form the basis for alternative pharmacotherapies after cholinergic deinnervation seen in neurodegenerative disorders.Supplementary materials are attached after the main text.

PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e56968 ◽  
Author(s):  
Carlo Natale Giuseppe Giachello ◽  
Federica Premoselli ◽  
Pier Giorgio Montarolo ◽  
Mirella Ghirardi

2014 ◽  
Vol 24 (05) ◽  
pp. 1440002 ◽  
Author(s):  
BEATA STRACK ◽  
KIMBERLE M. JACOBS ◽  
KRZYSZTOF J. CIOS

The paper introduces a multi-layer multi-column model of the cortex that uses four different neuron types and short-term plasticity dynamics. It was designed with details of neuronal connectivity available in the literature and meets these conditions: (1) biologically accurate laminar and columnar flows of activity, (2) normal function of low-threshold spiking and fast spiking neurons, and (3) ability to generate different stages of epileptiform activity. With these characteristics the model allows for modeling lesioned or malformed cortex, i.e. examine properties of developmentally malformed cortex in which the balance between inhibitory neuron subtypes is disturbed.


Neuron ◽  
2009 ◽  
Vol 62 (4) ◽  
pp. 539-554 ◽  
Author(s):  
Bin Pan ◽  
Robert S. Zucker

2008 ◽  
Vol 174 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Martin D. Haustein ◽  
Thomas Reinert ◽  
Annika Warnatsch ◽  
Bernhard Englitz ◽  
Beatrice Dietz ◽  
...  

2005 ◽  
Vol 37 (3) ◽  
pp. 261-272 ◽  
Author(s):  
M. V. Storozhuk ◽  
S. Yu. Ivanova ◽  
P. G. Kostyuk

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Gülçin Vardar ◽  
Andrea Salazar-Lázaro ◽  
Marisa M Brockmann ◽  
Marion Weber-Boyvat ◽  
Sina Zobel ◽  
...  

Syntaxin-1 (STX1) and Munc18-1 are two requisite components of synaptic vesicular release machinery, so much so synaptic transmission cannot proceed in their absence. They form a tight complex through two major binding modes: through STX1's N-peptide and through STX's closed conformation driven by its Habc- domain. However, physiological roles of these two reportedly different binding modes in synapses are still controversial. Here we characterized the roles of STX1's N-peptide, Habc-domain, and open conformation with and without N-peptide deletion using our STX1-null mouse model system and exogenous reintroduction of STX1A mutants. We show, on the contrary to the general view, that the Habc-domain is absolutely required and N-peptide is dispensable for synaptic transmission. However, STX1A's N-peptide plays a regulatory role, particularly in the Ca2+-sensitivity and the short-term plasticity of vesicular release, whereas STX1's open-conformation governs the vesicle fusogenicity. Strikingly, we also show neurotransmitter release still proceeds when the two interaction modes between STX1A and Munc18-1 are presumably intervened, necessitating a refinement of the conceptualization of STX1A-Munc18-1 interaction.


2004 ◽  
Vol 84 (1) ◽  
pp. 69-85 ◽  
Author(s):  
MATTHEW A. XU-FRIEDMAN ◽  
WADE G. REGEHR

Xu-Friedman, Matthew A., and Wade G. Regehr. Structural Contributions to Short-Term Synaptic Plasticity. Physiol Rev 84: 69–85, 2004; 10.1152/physrev.00016.2003.—Synaptic ultrastructure is critical to many basic hypotheses about synaptic transmission. Various aspects of synaptic ultrastructure have also been implicated in the mechanisms of short-term plasticity. These forms of plasticity can greatly affect synaptic strength during ongoing activity. We review the evidence for how synaptic ultrastructure may contribute to facilitation, depletion, saturation, and desensitization.


Sign in / Sign up

Export Citation Format

Share Document