scholarly journals De novo learning and adaptation of continuous control in a manual tracking task

Author(s):  
Christopher S Yang ◽  
Noah J Cowan ◽  
Adrian M Haith

AbstractHow do people learn to perform tasks that require continuous adjustments of motor output, like riding a bicycle? People rely heavily on cognitive strategies when learning discrete movement tasks, but such time-consuming strategies are infeasible in continuous control tasks that demand rapid responses to ongoing sensory feedback. To understand how people can learn to perform such tasks without the benefit of cognitive strategies, we imposed a rotation/mirror reversal of visual feedback while participants performed a continuous tracking task. We analyzed behavior using a system identification approach which revealed two qualitatively different components of learning: adaptation of a baseline controller and formation of a new task-specific continuous controller. These components exhibited different signatures in the frequency domain and were differentially engaged under the rotation/mirror reversal. Our results demonstrate that people can rapidly build a new continuous controller de novo and can flexibly integrate this process with adaptation of an existing controller.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Christopher S Yang ◽  
Noah J Cowan ◽  
Adrian M Haith

How do people learn to perform tasks that require continuous adjustments of motor output, like riding a bicycle? People rely heavily on cognitive strategies when learning discrete movement tasks, but such time-consuming strategies are infeasible in continuous control tasks that demand rapid responses to ongoing sensory feedback. To understand how people can learn to perform such tasks without the benefit of cognitive strategies, we imposed a rotation/mirror reversal of visual feedback while participants performed a continuous tracking task. We analyzed behavior using a system identification approach which revealed two qualitatively different components of learning: adaptation of a baseline controller and formation of a new, task-specific continuous controller. These components exhibited different signatures in the frequency domain and were differentially engaged under the rotation/mirror reversal. Our results demonstrate that people can rapidly build a new continuous controller de novo and can simultaneously deploy this process with adaptation of an existing controller.


2018 ◽  
Author(s):  
Eric J. Earley ◽  
Reva E. Johnson ◽  
Levi J. Hargrove ◽  
Jon W. Sensinger

AbstractSensory feedback is critical in fine motor control, learning, and adaptation. However, robotic prosthetic limbs currently lack the feedback segment of the communication loop between user and device. Artificial sensory feedback can close this gap, but sometimes this improvement only persists when users cannot see their prosthesis. suggesting the provided feedback is redundant with vision. Thus, given the choice, users rely on vision over artificial feedback. To effectively augment vision, sensory feedback must provide information that vision cannot provide or provides poorly. Although vision is known to be less precise at estimating speed than position, no work has compared speed precision of biomimetic arm movements. In this study, we investigated the uncertainty of visual speed estimates as defined by different virtual arm movements. We found that uncertainty was greatest for visual estimates of joint speeds, compared to absolute or linear endpoint speeds. Furthermore, this uncertainty increased when the joint reference frame speed varied over time, potentially caused by an overestimation of joint speed. Finally, we demonstrate a joint-based sensory feedback paradigm capable of significantly reducing joint speed uncertainty when paired with vision. Ultimately, this work may lead to improved prosthesis control and capacity for motor learning.


2019 ◽  
Author(s):  
Sarah A. Wilterson ◽  
Jordan A. Taylor

AbstractLearning in sensorimotor adaptation tasks has been historically viewed as solely an implicit learning phenomenon. However, recent findings suggest that implicit adaptation is heavily constrained, calling into question its utility in motor learning, and the theoretical framework of sensorimotor adaptation paradigms. These inferences have been based mainly on results from single bouts of training. Thus, it is possible that implicit adaptation processes supersede explicit compensation strategies, such as explicitly re-aiming their intended movement direction, over repeated practice sessions. We tested this by dissociating the contributions of explicit re-aiming strategies and implicit adaptation over five consecutive days of training. Despite a substantially longer duration of training, implicit adaptation still plateaued at a value far short of complete learning. We sought to determine if these constraints on implicit adaptation extend to another sensorimotor task, mirror reversal. As has been observed in previous studies, implicit adaptation was inappropriate for mirror reversal and was gradually suppressed over training. These findings are consistent with a handful of recent studies suggesting that implicit adaptation processes, as studied in sensorimotor adaptation paradigms, may only make subtle recalibrations of an existing skill and cannot contribute to motor skill learning de novo.Significance StatementIn this set of studies, we find that implicit adaptation cannot fully account for learning in adaptation tasks, such as the visuomotor rotation and mirror reversal tasks, even following several days of training. In fact, implicit adaptation can be counterproductive to learning. These findings question the utility of implicit adaptation processes to motor skill learning more broadly.


Author(s):  
Aline Byrnes ◽  
Elsa E. Ramos ◽  
Minoru Suzuki ◽  
E.D. Mayfield

Renal hypertrophy was induced in 100 g male rats by the injection of 250 mg folic acid (FA) dissolved in 0.3 M NaHCO3/kg body weight (i.v.). Preliminary studies of the biochemical alterations in ribonucleic acid (RNA) metabolism of the renal tissue have been reported recently (1). They are: RNA content and concentration, orotic acid-c14 incorporation into RNA and acid soluble nucleotide pool, intracellular localization of the newly synthesized RNA, and the specific activity of enzymes of the de novo pyrimidine biosynthesis pathway. The present report describes the light and electron microscopic observations in these animals. For light microscopy, kidney slices were fixed in formalin, embedded, sectioned, and stained with H & E and PAS.


Author(s):  
M. Shlepr ◽  
R. L. Turner

Calcification in the echinoderms occurs within a limited-volume cavity enclosed by cytoplasmic extensions of the mineral depositing cells, the sclerocytes. The current model of this process maintains that the sheath formed from these cytoplasmic extensions is syncytial. Prior studies indicate that syncytium formation might be dependent on sclerocyte density and not required for calcification. This model further envisions that ossicles formed de novo nucleate and grow intracellularly until the ossicle effectively outgrows the vacuole. Continued ossicle growth occurs within the sheath but external to the cell membrane. The initial intracellular location has been confirmed only for elements of the echinoid tooth.The regenerating aboral disc integument of ophiophragmus filograneus was used to test the current echinoderm calcification model. This tissue is free of calcite fragments, thus avoiding questions of cellular engulfment, and ossicles are formed de novo. The tissue calcification pattern was followed by light microscopy in both living and fixed preparations.


2019 ◽  
Vol 476 (22) ◽  
pp. 3521-3532
Author(s):  
Eric Soubeyrand ◽  
Megan Kelly ◽  
Shea A. Keene ◽  
Ann C. Bernert ◽  
Scott Latimer ◽  
...  

Plants have evolved the ability to derive the benzenoid moiety of the respiratory cofactor and antioxidant, ubiquinone (coenzyme Q), either from the β-oxidative metabolism of p-coumarate or from the peroxidative cleavage of kaempferol. Here, isotopic feeding assays, gene co-expression analysis and reverse genetics identified Arabidopsis 4-COUMARATE-COA LIGASE 8 (4-CL8; At5g38120) as a contributor to the β-oxidation of p-coumarate for ubiquinone biosynthesis. The enzyme is part of the same clade (V) of acyl-activating enzymes than At4g19010, a p-coumarate CoA ligase known to play a central role in the conversion of p-coumarate into 4-hydroxybenzoate. A 4-cl8 T-DNA knockout displayed a 20% decrease in ubiquinone content compared with wild-type plants, while 4-CL8 overexpression boosted ubiquinone content up to 150% of the control level. Similarly, the isotopic enrichment of ubiquinone's ring was decreased by 28% in the 4-cl8 knockout as compared with wild-type controls when Phe-[Ring-13C6] was fed to the plants. This metabolic blockage could be bypassed via the exogenous supply of 4-hydroxybenzoate, the product of p-coumarate β-oxidation. Arabidopsis 4-CL8 displays a canonical peroxisomal targeting sequence type 1, and confocal microscopy experiments using fused fluorescent reporters demonstrated that this enzyme is imported into peroxisomes. Time course feeding assays using Phe-[Ring-13C6] in a series of Arabidopsis single and double knockouts blocked in the β-oxidative metabolism of p-coumarate (4-cl8; at4g19010; at4g19010 × 4-cl8), flavonol biosynthesis (flavanone-3-hydroxylase), or both (at4g19010 × flavanone-3-hydroxylase) indicated that continuous high light treatments (500 µE m−2 s−1; 24 h) markedly stimulated the de novo biosynthesis of ubiquinone independently of kaempferol catabolism.


2020 ◽  
Vol 158 (6) ◽  
pp. S-947
Author(s):  
Asad Ur Rahman ◽  
Ishtiaq Hussain ◽  
Badar Hasan ◽  
Kanwarpreet Tandon ◽  
Fernando Castro

Sign in / Sign up

Export Citation Format

Share Document