scholarly journals A super sensitive auxin-inducible degron system with an engineered auxin-TIR1 pair

Author(s):  
Kohei Nishimura ◽  
Ryotaro Yamada ◽  
Shinya Hagihara ◽  
Rie Iwasaki ◽  
Naoyuki Uchida ◽  
...  

AbstractAuxin-Inducible Degron (AID) technology enables conditional depletion of targeted proteins. However, the applicability of the AID in vertebrate cells has been limited due to cytotoxicity caused by high auxin concentrations. Here, we establish an improved AID system using an engineered orthogonal auxin-TIR1 pair, which exhibits over 1,000 times stronger binding. With ~1,000-fold less auxin concentration, we achieved to generate the AID-based knockout cells in various human and mouse cell lines in a single transfection.

2014 ◽  
Vol 8 (S4) ◽  
Author(s):  
Luis Felipe Buso Bortolotto ◽  
Bruna Cestari Azevedo ◽  
Gabriel Silva ◽  
Mozart Marins ◽  
Ana Lucia Fachin

2006 ◽  
Vol 74 (1) ◽  
pp. 225-238 ◽  
Author(s):  
Christine Roshick ◽  
Heidi Wood ◽  
Harlan D. Caldwell ◽  
Grant McClarty

ABSTRACT Gamma interferon (IFN-γ)-induced effector mechanisms have potent antichlamydial activities that are critical to host defense. The most prominent and well-studied effectors are indoleamine dioxygenase (IDO) and nitric oxide (NO) synthase. The relative contributions of these mechanisms as inhibitors of chlamydial in vitro growth have been extensively studied using different host cells, induction mechanisms, and chlamydial strains with conflicting results. Here, we have undertaken a comparative analysis of cytokine- and lipopolysaccharide (LPS)-induced IDO and NO using an extensive assortment of human and murine host cells infected with human and murine chlamydial strains. Following cytokine (IFN-γ or tumor necrosis factor alpha) and/or LPS treatment, the majority of human cell lines induced IDO but failed to produce NO. Conversely, the majority of mouse cell lines studied produced NO, not IDO. Induction of IDO in human cell lines inhibited growth of L2 and mouse pneumonitis agent, now referred to as Chlamydia muridarum MoPn equally in all but two lines, and inhibition was completely reversible by the addition of tryptophan. IFN-γ treatment of mouse cell lines resulted in substantially greater reduction of L2 than MoPn growth. However, despite elevated NO production by murine cells, blockage of NO synthesis with the l-arginine analogue N-monomethyl-l-arginine only partially rescued chlamydial growth, suggesting the presence of another IFN-γ-inducible antichlamydial mechanism unique to murine cells. Moreover, NO generated from the chemical nitric oxide donor sodium nitroprusside showed little direct effect on chlamydial infectivity or growth, indicating a natural resistance to NO. Finally, IFN-γ-inducible IDO expression in human HeLa cells was inhibited following exogenous NO treatment, resulting in a permissive environment for chlamydial growth. In summary, cytokine- and LPS-inducible effectors produced by human and mouse cells differ and, importantly, these host-specific effector responses result in chlamydial strain-specific antimicrobial activities.


1989 ◽  
Vol 76 (2) ◽  
pp. 72-74 ◽  
Author(s):  
W. Lohmann ◽  
F. Hugo

Sign in / Sign up

Export Citation Format

Share Document