scholarly journals Learning massive interpretable gene regulatory networks of the human brain by merging Bayesian Networks

Author(s):  
Nikolas Bernaola ◽  
Mario Michiels ◽  
Pedro Larrañaga ◽  
Concha Bielza

AbstractWe present FGES-Merge, a new method for learning the structure of gene regulatory networks via merging locally learned Bayesian networks, based on the fast greedy equivalent search algorithm. The method is competitive with the state of the art in terms of the recall of the true structure while also improving upon it in terms of speed, scaling up to the tens of thousands of variables and being able to use empirical knowledge about the topological structure of gene regulatory networks. We apply this method to learning the gene regulatory network for the full human genome using data from samples of different brain structures (from the Allen Human Brain Atlas). Our goal is to develop a Bayesian network model that predicts interactions between genes in a way that is clear to experts, following the current trends in interpretable artificial intelligence. To achieve this, we also present a new open-access visualization tool that facilitates the exploration of massive networks and can aid in finding nodes of interest for experimental tests.

2017 ◽  
Vol 145 ◽  
pp. S142
Author(s):  
Aslihan Dincer ◽  
Bin Zhang ◽  
Joel Dudley ◽  
David Gavin ◽  
Eric Schadt ◽  
...  

2015 ◽  
Vol 5 (11) ◽  
pp. e679-e679 ◽  
Author(s):  
A Dincer ◽  
D P Gavin ◽  
K Xu ◽  
B Zhang ◽  
J T Dudley ◽  
...  

2012 ◽  
pp. 1-6
Author(s):  
Ai Kung Tan ◽  
Mohd Saberi Mohamad

In this research, Bayesian network is proposed as the model to construct gene regulatory networks from Saccharomyces cerevisiae cell-cycle gene expression dataset and Escherichia coli dataset due to its capability of handling microarray datasets with missing values. The goal of this research is to study and to understand the framework of the Bayesian networks, and then to construct gene regulatory networks from Saccharomyces cerevisiae cell-cycle gene expression dataset and Escherichia coli dataset by developing Bayesian networks using hill-climbing algorithm and Efron’s bootstrap approach and then the performance of the constructed gene networks of Saccharomyces cerevisiae are evaluated and are compared with the previously constructed sub-networks by Dejori [14]. At the end of this research, the gene networks constructed for Saccharomyces cerevisiae not only have achieved high True Positive Rate (more than 90%), but the networks constructed also have discovered more potential interactions between genes. Therefore, it can be concluded that the performance of the gene regulatory networks constructed using Bayesian networks in this research is proved to be better because it can reveal more gene relationships. Dalam penyelidikan ini, Bayesian network adalah dicadangkan sebagai model untuk membina gene regulatory networks dari kitar sel S. cerevisiae set data disebabkan keupayaannya untuk mengendali set data microarray yang mempunyai nilai-nilai yang hilang. Tujuan penyelidikan ini adalah untuk mempelajari dan memahami rekabentuk untuk Bayesian network, dan kemudian untuk membina gene regulatory networks dari data Saccharomyces cerevisiae cell-cycle gene expression dan data Escherichia coli dengan membina model Bayesian networks dengan menggunakan algoritma hill-climbing serta Efron’s bootstrap approach dan gene networks yang dibina untuk Saccharomyces cerevisiae dibandingkan dengan sub-networks yang dibina oleh Dejori [14]. Pada akhir kajian ini, gene networks yang dibina untuk Saccharomyces cerevisiae bukan sahaja telah mencapai True Positive Rate yang tinggi (lebih dari 90%), tetapi gene networks yang dibina juga telah menemui lebih banyak interaksi berpotensi antara gen. Oleh kerana itu, dapat disimpulkan bahawa prestasi gene networks yang dibina menggunakan Bayesian network dalam kajian ini adalah terbukti lebih baik kerana ia boleh mendedahkan lebih banyak hubungan antara gen.


Sign in / Sign up

Export Citation Format

Share Document