scholarly journals The Easter and Passover Blip in New York City: How exceptions can cause detrimental effects in pandemic times

Author(s):  
Maximilian Vierlboeck ◽  
Roshanak R. Nilchiani ◽  
Christine M. Edwards

Abstract and Executive SummaryWhen it comes to pandemics such as the currently present COVID-19 [1], various issues and problems arise for infrastructures and institutions. Due to possible extreme effects, such as hospitals potentially running out of beds or medical equipment, it is essential to lower the infection rate to create enough space to attend to the affected people and allow enough time for a vaccine to be developed. Unfortunately, this requires that measures put into place are upheld long enough to reduce the infection rate sufficiently.In this paper, we describe research simulating the influences of the contact rate on the spread of the pandemic using New York City as an example (Section IV) and especially already observed effects of contact rate increases during holidays [2-4] (Section V). In multiple simulations scenarios for Passover and Easter holidays, we evaluated 25%, 50%, 75%, and 100% temporary increases in contact rates using a scenario close to the currently reported numbers as reference and contact rates based on bioterrorism research as a “normal” baseline for NYC.The first general finding from the simulations is that singular events of increased visits/contacts amplify each other disproportionately if they are happening in close proximity (time intervals) together. The second general observation was that contact rate spikes leave a permanently increased and devastating infection rate behind, even after the contact rate returns to the reduced one. In case of a temporary sustained increase of contact rate for just three days in a row, the aftermath results in an increase of infection rate up to 40%, which causes double the fatalities in the long run.In numbers, given that increases of 25% and 50% seem to be most likely given the data seen in Germany for the Easter weekend for example [2, 3], our simulations show the following increases (compared to the realistic reference run): for a temporary 25% surge in contact rate, the total cases grew by 215,880, the maximum of required hospitalizations over time increased to 63,063, and the total fatalities climbed by 8,844 accumulated over 90 days. As for the 50% surge, we saw the total number of cases rise by 461,090, the maximum number of required hospitalizations increase to 79,733, and the total number of fatalities climb by 19,125 over 90 days in NYC.All in all, we conclude that even very short, temporary increases in contact rates can have disproportionate effects and result in unrecoverable phenomena that can hardly be reversed or managed later. The numbers show possible phenomena before they might develop effects in reality. This is important because phenomena such as the described blip can impact the hospitals in reality. Therefore, we warn that a wave of infections due to increased contact rates during Passover/Easter might come as a result!

Author(s):  
Ric Curtis ◽  
Karen Terry ◽  
Meredith Dank ◽  
Kirk Dombrowski ◽  
Bilal Khan ◽  
...  

Author(s):  
Bianca N. Howard ◽  
Vijay Modi

Combined heat and power (CHP) has the potential to decrease greenhouse gas emissions by utilizing waste heat that is typically rejected to the environment. CHP systems have been used to satisfy loads on university and corporate campuses but there may be other clusters of mixed used buildings that are viable for a CHP system. In an urban environment, such as New York City, high electricity loads and space heating loads are located in close proximity to each other, whether in a single building or in a neighborhood. This indicates a potential for clusters of buildings demand that could be satisfied by CHP. The analysis presented attempts to determine the potential for CHP systems for the 28,840 blocks of New York City many of which incorporate buildings of mix use. The systems are sized to meet the electrical base load and are considered viable if the CHP efficiency (useful electrical and thermal energy divided by the fuel input) is greater than 60% and the system size is larger than 30kW. The analysis determined that of the 28,840 blocks in New York City, 3,205 could be considered for a CHP system.


1942 ◽  
Vol 74 (3-4) ◽  
pp. 155-162
Author(s):  
H. Kurdian

In 1941 while in New York City I was fortunate enough to purchase an Armenian MS. which I believe will be of interest to students of Eastern Christian iconography.


1999 ◽  
Vol 27 (2) ◽  
pp. 202-203
Author(s):  
Robert Chatham

The Court of Appeals of New York held, in Council of the City of New York u. Giuliani, slip op. 02634, 1999 WL 179257 (N.Y. Mar. 30, 1999), that New York City may not privatize a public city hospital without state statutory authorization. The court found invalid a sublease of a municipal hospital operated by a public benefit corporation to a private, for-profit entity. The court reasoned that the controlling statute prescribed the operation of a municipal hospital as a government function that must be fulfilled by the public benefit corporation as long as it exists, and nothing short of legislative action could put an end to the corporation's existence.In 1969, the New York State legislature enacted the Health and Hospitals Corporation Act (HHCA), establishing the New York City Health and Hospitals Corporation (HHC) as an attempt to improve the New York City public health system. Thirty years later, on a renewed perception that the public health system was once again lacking, the city administration approved a sublease of Coney Island Hospital from HHC to PHS New York, Inc. (PHS), a private, for-profit entity.


Sign in / Sign up

Export Citation Format

Share Document