scholarly journals Resilient SARS-CoV-2 diagnostics workflows including viral heat inactivation

Author(s):  
Maria Jose Lista ◽  
Robert Page ◽  
Helin Sertkaya ◽  
Pedro M. Matos ◽  
Elena Ortiz-Zapater ◽  
...  

AbstractThere is a worldwide shortage of reagents to perform detection of SARS-CoV-2. Many clinical diagnostic laboratories rely on commercial platforms that provide integrated end-to-end solutions. While this provides established robust pipelines, there is a clear bottleneck in the supply of reagents given the current situation of extraordinary high demand. Some laboratories resort to implementing kit-free handling procedures, but many other small laboratories will not have the capacity to develop those and/or will perform manual handling of their samples. In order to provide multiple workflows for SARS-CoV-2 nucleic acid detection we compared several commercially available RNA extraction methods: QIAamp Viral RNA Mini Kit (QIAGEN), the recently developed RNAdvance Blood (Beckman) and Mag-Bind Viral DNA/RNA 96 Kit (Omega Bio-tek). We also compared different 1-step RT-qPCR Master Mix brands: TaqMan™ Fast Virus 1-Step Master Mix (ThermoFisher Scientific), qPCRBIO Probe 1-Step Go Lo-ROX (PCR Biosystems) and Luna® Universal Probe One-Step RT-qPCR Kit (NEB). We used the Centre for Disease Control (CDC) recommended primers that detect two regions of the viral N gene as well as those that detect the RdRP gene region as per Public Health England (PHE) guidelines (Charité/WHO/PHE). Our data show that the RNA extraction methods provide similar results. Amongst the qPCR reagents tested, TaqMan™ Fast Virus 1-Step Master Mix and Luna® Universal Probe One-Step RT-qPCR Kit proved most sensitive. The N1 and N2 primer-probes provide a more reliable detection than the RdRP_SARSr primer-probe set, particularly in samples with low viral titres. Importantly, we have implemented a protocol using heat inactivation and demonstrate that it has minimal impact on the sensitivity of the qPCR in clinical samples – potentially making SARS-CoV-2 testing portable to settings that do not have CL-3 facilities.In summary, we provide several testing pipelines that can be easily implemented in other laboratories and have made all our protocols and SOPs freely available at https://osf.io/uebvj/.

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256813
Author(s):  
Maria Jose Lista ◽  
Pedro M. Matos ◽  
Thomas J. A. Maguire ◽  
Kate Poulton ◽  
Elena Ortiz-Zapater ◽  
...  

There is a worldwide need for reagents to perform SARS-CoV-2 detection. Some laboratories have implemented kit-free protocols, but many others do not have the capacity to develop these and/or perform manual processing. We provide multiple workflows for SARS-CoV-2 nucleic acid detection in clinical samples by comparing several commercially available RNA extraction methods: QIAamp Viral RNA Mini Kit (QIAgen), RNAdvance Blood/Viral (Beckman) and Mag-Bind Viral DNA/RNA 96 Kit (Omega Bio-tek). We also compared One-step RT-qPCR reagents: TaqMan Fast Virus 1-Step Master Mix (FastVirus, ThermoFisher Scientific), qPCRBIO Probe 1-Step Go Lo-ROX (PCR Biosystems) and Luna® Universal Probe One-Step RT-qPCR Kit (Luna, NEB). We used primer-probes that detect viral N (EUA CDC) and RdRP. RNA extraction methods provided similar results, with Beckman performing better with our primer-probe combinations. Luna proved most sensitive although overall the three reagents did not show significant differences. N detection was more reliable than that of RdRP, particularly in samples with low viral titres. Importantly, we demonstrated that heat treatment of nasopharyngeal swabs at 70°C for 10 or 30 min, or 90°C for 10 or 30 min (both original variant and B 1.1.7) inactivated SARS-CoV-2 employing plaque assays, and had minimal impact on the sensitivity of the qPCR in clinical samples. These findings make SARS-CoV-2 testing portable in settings that do not have CL-3 facilities. In summary, we provide several testing pipelines that can be easily implemented in other laboratories and have made all our protocols and SOPs freely available at https://osf.io/uebvj/.


2021 ◽  
pp. 100032
Author(s):  
Vinícius Pietta Perez ◽  
Wallace Felipe Blohen Pessoa ◽  
Bruno Henrique Andrade Galvão ◽  
Eduardo Sergio Soares Sousa ◽  
Naiara Naiana Dejani ◽  
...  

2016 ◽  
Vol 50 (2) ◽  
pp. 108-115 ◽  
Author(s):  
Alves Mônica Ghislaine Oliveira ◽  
Mario Pérez-Sayáns ◽  
Maria-Elena Padín-Iruegas ◽  
Maria Dolores Reboiras-López ◽  
José Manuel Suarez-Peñaranda ◽  
...  

Author(s):  
Monica Sentmanat ◽  
Evguenia Kouranova ◽  
Xiaoxia Cui

ABSTRACTThe global outbreak of coronavirus disease 2019 (COVID-19) has placed an unprecedented burden on healthcare systems as the virus spread from the initial 27 reported cases in the city of Wuhan, China to a global pandemic in under three month[1]. Resources essential to monitoring virus transmission have been challenged with a demand for expanded surveillance. The CDC 2019-nCoV Real-Time Diagnostic Panel uses a real-time reverse transcription polymerase chain reaction (RT-PCR) consisting of two TaqMan probe and primer sets specific for the 2019-nCoV N gene, which codes for the nucleocapsid structural protein that encapsulates viral RNA, for the qualitative detection of 2019-nCoV viral RNA in respiratory samples. To isolate RNA from respiratory samples, the CDC lists RNA extraction kits from four manufacturers. In anticipation of a limited supply chain of RNA extraction kits and the need for test scalability, we sought to identify alternative RNA extraction methods. Here we show that direct lysis of respiratory samples can be used in place of RNA extraction kits to run the CDC 2019-nCoV Real-Time Diagnostic assay with the additional benefits of higher throughput, lower cost, faster turnaround and possibly higher sensitivity and improved safety.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1558
Author(s):  
Zhan Qiu Mao ◽  
Mizuki Fukuta ◽  
Jean Claude Balingit ◽  
Thi Thanh Ngan Nguyen ◽  
Co Thach Nguyen ◽  
...  

The RT-qPCR method remains the gold standard and first-line diagnostic method for the detection of SARS-CoV-2 and flaviviruses, especially in the early stage of viral infection. Rapid and accurate viral detection is a starting point in the containment of the COVID-19 pandemic and flavivirus outbreaks. However, the shortage of diagnostic reagents and supplies, especially in resource-limited countries that experience co-circulation of SARS-CoV-2 and flaviviruses, are limitations that may result in lesser availability of RT-qPCR-based diagnostic tests. In this study, the utility of RNA-free extraction methods was assessed for the direct detection of SARS-CoV-2 and DENV-2 in heat-inactivated or chemical-inactivated samples. The findings demonstrate that direct real-time RT-qPCR is a feasible option in comparison to conventional real-time RT-qPCR based on viral genome extraction-based methods. The utility of heat-inactivation and direct real-time RT-qPCR for SARS-CoV-2, DENV-2 viral RNA detection was demonstrated by using clinical samples of SARS-CoV-2 and DENV-2 and spiked cell culture samples of SARS-CoV-2 and DENV-2. This study provides a simple alternative workflow for flavivirus and SARS-CoV-2 detection that includes heat inactivation and viral RNA extraction-free protocols, with aims to reduce the risk of exposure during processing of SARS-CoV-2 biological specimens and to overcome the supply-chain bottleneck, particularly in resource limited settings with flavivirus co-circulation.


2020 ◽  
Vol 26 (3) ◽  
pp. 170-178
Author(s):  
Sun-Jung Kwon ◽  
Ju-Yeon Yoon ◽  
In-Sook Cho ◽  
Bong-Nam Chung

2011 ◽  
Vol 77 (18) ◽  
pp. 6476-6485 ◽  
Author(s):  
Zhanbei Liang ◽  
Ann Keeley

ABSTRACTExtraction of high-quality mRNA fromCryptosporidium parvumis a key step in PCR detection of viable oocysts in environmental samples. Current methods for monitoring oocysts are limited to water samples; therefore, the goal of this study was to develop a rapid and sensitive procedure forCryptosporidiumdetection in soil samples. The efficiencies of five RNA extraction methods were compared (mRNA extraction with the Dynabeads mRNA Direct kit after chemical and physical sample treatments, and total RNA extraction methods using the FastRNA Pro Soil-Direct, PowerSoil Total RNA, E.Z.N.A. soil RNA, and Norgen soil RNA purification kits) for the direct detection ofCryptosporidiumwith oocyst-spiked sandy, loamy, and clay soils by using TaqMan reverse transcription-PCR. The study also evaluated the presence of inhibitors by synthesis and incorporation of an internal positive control (IPC) RNA into reverse transcription amplifications, used different facilitators (bovine serum albumin, yeast RNA, salmon DNA, skim milk powder, casein, polyvinylpyrrolidone, sodium hexametaphosphate, andSalmonella entericaserovar Typhi) to mitigate RNA binding on soil components, and applied various treatments (β-mercaptoethanol and bead beating) to inactivate RNase and ensure the complete lysis of oocysts. The results of spiking studies showed thatSalmonellacells most efficiently relieved binding of RNA. With the inclusion ofSalmonelladuring extraction, the most efficient mRNA method was Dynabeads, with a detection limit of 6 × 102oocysts g−1of sandy soil. The most efficient total RNA method was PowerSoil, with detection limits of 1.5 × 102, 1.5 × 103, and 1.5 × 104C. parvumoocysts g−1soil for sandy, loamy, and clay samples, respectively.


2007 ◽  
Vol 70 (4) ◽  
pp. 967-974 ◽  
Author(s):  
ANA MARIA de RODA HUSMAN ◽  
FROUKJE LODDER-VERSCHOOR ◽  
HAROLD H. J. L. van den BERG ◽  
FRANÇOISE S. LE GUYADER ◽  
HILDE van PELT ◽  
...  

Detection of pathogenic viruses in oysters implicated in gastroenteritis outbreaks is often hampered by time-consuming, specialist virus extraction methods. Five virus RNA extraction methods were evaluated with respect to performance characteristics and sensitivity on artificially contaminated oyster digestive glands. The two most promising procedures were further evaluated on bioaccumulated and naturally contaminated oysters. The most efficient method was used to trace the source in an outbreak situation. Out of five RNA extraction protocols, PEG precipitation and the RNeasy Kit performed best with norovirus genogroup III–spiked digestive glands. Analyzing 24-h bioaccumulated oysters revealed a slightly better sensitivity with PEG precipitation, but the RNeasy Kit was less prone to concentrate inhibitors. The latter procedure demonstrated the presence of human noroviruses in naturally contaminated oysters and oysters implicated in an outbreak. In this outbreak, in four out of nine individually analyzed digestive glands, norovirus was detected. In one of the oysters and in one of the fecal samples of the clinical cases, identical norovirus strains were detected. A standard and rapid virus extraction method using the RNeasy Kit appeared to be most useful in tracing shellfish as the source in gastroenteritis outbreaks, and to be able to make effective and timely risk management decisions.


Sign in / Sign up

Export Citation Format

Share Document