scholarly journals Generation of kidney ureteric bud and collecting duct organoids that recapitulate kidney branching morphogenesis

2020 ◽  
Author(s):  
Zipeng Zeng ◽  
Biao Huang ◽  
Riana K. Parvez ◽  
Yidan Li ◽  
Jyunhao Chen ◽  
...  

AbstractKidney organoids model development and diseases of the nephron but not the contiguous epithelial network of the kidney’s collecting duct (CD) system. Here, we report the generation of an expandable, 3D branching ureteric bud (UB) organoid culture model that can be derived from primary UB progenitors from mouse and human fetal kidneys, or generated de novo from pluripotent human stem cells. UB organoids differentiate into CD organoids in vitro, with differentiated cell types adopting spatial assemblies reflective of the adult kidney collecting system. Aggregating 3D-cultured nephron progenitor cells with UB organoids in vitro results in a reiterative process of branching morphogenesis and nephron induction, similar to kidney development. Combining efficient gene editing with the UB organoid model will facilitate an enhanced understanding of development, regeneration and diseases of the mammalian collecting system.One sentence summaryCollecting duct organoids derived from primary mouse and human ureteric bud progenitor cells and human pluripotent stem cells provide an in vitro platform for genetic dissection of development, regeneration and diseases of the mammalian collecting system.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zipeng Zeng ◽  
Biao Huang ◽  
Riana K. Parvez ◽  
Yidan Li ◽  
Jyunhao Chen ◽  
...  

AbstractCurrent kidney organoids model development and diseases of the nephron but not the contiguous epithelial network of the kidney’s collecting duct (CD) system. Here, we report the generation of an expandable, 3D branching ureteric bud (UB) organoid culture model that can be derived from primary UB progenitors from mouse and human fetal kidneys, or generated de novo from human pluripotent stem cells. In chemically-defined culture conditions, UB organoids generate CD organoids, with differentiated principal and intercalated cells adopting spatial assemblies reflective of the adult kidney’s collecting system. Aggregating 3D-cultured nephron progenitor cells with UB organoids in vitro results in a reiterative process of branching morphogenesis and nephron induction, similar to kidney development. Applying an efficient gene editing strategy to remove RET activity, we demonstrate genetically modified UB organoids can model congenital anomalies of kidney and urinary tract. Taken together, these platforms will facilitate an enhanced understanding of development, regeneration and diseases of the mammalian collecting duct system.


2019 ◽  
Author(s):  
Aseda Tena ◽  
Yuxiang Zhang ◽  
Nia Kyritsis ◽  
Anne Devorak ◽  
Jeffrey Zurita ◽  
...  

ABSTRACTMild replication stress enhances appearance of dozens of robust recurrent genomic break clusters, termed RDCs, in cultured primary mouse neural stem and progenitor cells (NSPCs). Robust RDCs occur within genes (“RDC-genes”) that are long and have roles in neural cell communications and/or have been implicated in neuropsychiatric diseases or cancer. We sought to develop an in vitro approach to determine whether specific RDC formation is associated with neural development. For this purpose, we adapted a system to induce neural progenitor cell (NPC) development from mouse embryonic stem cell (ESC) lines deficient for XRCC4 plus p53, a genotype that enhances DNA double-strand break (DSB) persistence to enhance detection. We tested for RDCs by our genome wide DSB identification approach that captures DSBs genome-wide via their ability to join to specific genomic Cas9/sgRNA-generated bait DSBs. In XRCC4/p53-deficient ES cells, we detected 7 RDCs, which were in genes, with two RDCs being robust. In contrast, in NPCs derived from these ES cell lines, we detected 29 RDCs, a large fraction of which were robust and associated with long, transcribed neural genes that were also robust RDC-genes in primary NSPCs. These studies suggest that many RDCs present in NSPCs are developmentally influenced to occur in this cell type and indicate that induced development of NPCs from ES cells provides an approach to rapidly elucidate mechanistic aspects of NPC RDC formation.SIGNIFICANCE STATEMENTWe previously discovered a set of long neural genes susceptible to frequent DNA breaks in primary mouse brain progenitor cells. We termed these genes RDC-genes. RDC-gene breakage during brain development might alter neural gene function and contribute to neurological diseases and brain cancer. To provide an approach to characterize the unknown mechanism of neural RDC-gene breakage, we asked whether RDC-genes appear in neural progenitors differentiated from embryonic stem cells in culture. Indeed, robust RDC-genes appeared in neural progenitors differentiated in culture and many overlapped with robust RDC-genes in primary brain progenitors. These studies indicate that in vitro development of neural progenitors provides a model system for elucidating how RDC-genes are formed.


2004 ◽  
Vol 287 (4) ◽  
pp. F602-F611 ◽  
Author(s):  
Dong Chen ◽  
Richard Roberts ◽  
Martin Pohl ◽  
Sanjay Nigam ◽  
Jordan Kreidberg ◽  
...  

Inner medullary collecting ducts (IMCD) are terminally differentiated structures derived from the ureteric bud (UB). UB development is mediated by changes in the temporal and spatial expression of integrins and their respective ligands. We demonstrate both in vivo and in vitro that the UB expresses predominantly laminin receptors (α3β1-, α6β1-, and α6β4-integrins), whereas the IMCD expresses both collagen (α1β1- and α2β1-integrins) and laminin receptors. Cells derived from the IMCD, but not the UB, undergo tubulogenesis in collagen-I (CI) gels in an α1β1- and α2β1-dependent manner. UB cells transfected with the α2-integrin subunit undergo tubulogenesis in CI, suggesting that collagen receptors are required for branching morphogenesis in CI. In contrast, both UB and IMCD cells undergo tubulogenesis in CI/Matrigel gels. UB cells primarily utilize α3β1- and α6-integrins, whereas IMCD cells mainly employ α1β1 for this process. These results demonstrate a switch in integrin expression from primarily laminin receptors in the early UB to both collagen and laminin receptors in the mature IMCD, which has functional consequences for branching morphogenesis in three-dimensional cell culture models. This suggests that temporal and spatial changes in integrin expression could help organize the pattern of branching morphogenesis of the developing collecting system in vivo.


2017 ◽  
Author(s):  
Alyssa J. Miller ◽  
David R. Hill ◽  
Melinda S. Nagy ◽  
Yoshiro Aoki ◽  
Briana R. Dye ◽  
...  

SummaryThe bud tip epithelium of the branching mouse and human lung contains multipotent progenitors that are able to self-renew and give rise to all mature lung epithelial cell types. The current study aimed to understand the developmental signaling cues that regulate bud tip progenitor cells in the human fetal lung, which are present during branching morphogenesis, and to use this information to induce a bud tip progenitor-like population from human pluripotent stem cells (hPSCs) in vitro. We identified that FGF7, CHIR-99021 and RA maintained isolated human fetal lung epithelial bud tip progenitor cells in an undifferentiated state in vitro, and led to the induction of a 3-dimensional lung-like epithelium from hPSCs. 3-dimensional hPSC-derived lung tissue was initially patterned, with airway-like interior domains and bud tip-like progenitor domains at the periphery. Epithelial bud tip-like domains could be isolated, expanded and maintained as a nearly homogeneous population by serial passaging. Comparisons between human fetal lung epithelial bud tip cells and hPSC-derived bud tip-like cells were carried out using immunostaining, in situ hybridization and transcriptome-wide analysis, and revealed that in vitro derived tissue was highly similar to native lung. hPSC-derived epithelial bud tip-like structures survived in vitro for over 16 weeks, could be easily frozen and thawed and maintained multi-lineage potential. Furthermore, hPSC-derived epithelial bud tip progenitors successfully engrafted in the proximal airways of injured immunocompromised NSG mouse lungs, where they persisted for up to 6 weeks and gave rise to several lung epithelial lineages.


2017 ◽  
Vol 312 (3) ◽  
pp. F407-F417 ◽  
Author(s):  
Renfang Song ◽  
Adam Janssen ◽  
Yuwen Li ◽  
Samir El-Dahr ◽  
Ihor V. Yosypiv

The prorenin receptor (PRR) is a receptor for renin and prorenin, and an accessory subunit of the vacuolar proton pump H+-ATPase. Renal branching morphogenesis, defined as growth and branching of the ureteric bud (UB), is essential for mammalian kidney development. Previously, we demonstrated that conditional ablation of the PRR in the UB in PRRUB−/− mice causes severe defects in UB branching, resulting in marked kidney hypoplasia at birth. Here, we investigated the UB transcriptome using whole genome-based analysis of gene expression in UB cells, FACS-isolated from PRRUB−/−, and control kidneys at birth (P0) to determine the primary role of the PRR in terminal differentiation and growth of UB-derived collecting ducts. Three genes with expression in UB cells that previously shown to regulate UB branching morphogenesis, including Wnt9b, β-catenin, and Fgfr2, were upregulated, whereas the expression of Wnt11, Bmp7, Etv4, and Gfrα1 was downregulated. We next demonstrated that infection of immortalized UB cells with shPRR in vitro or deletion of the UB PRR in double-transgenic PRRUB−/−/ BatGal+ mice, a reporter strain for β-catenin transcriptional activity, in vivo increases β-catenin activity in the UB epithelia. In addition to UB morphogenetic genes, the functional groups of differentially expressed genes within the downregulated gene set included genes involved in molecular transport, metabolic disease, amino acid metabolism, and energy production. Together, these data demonstrate that UB PRR performs essential functions during UB branching and collecting duct morphogenesis via control of a hierarchy of genes that control UB branching and terminal differentiation of the collecting duct cells.


2019 ◽  
Author(s):  
Zenglai Tan ◽  
Aleksandra Rak-Raszewska ◽  
Ilya Skovorodkin ◽  
Seppo J. Vainio

SUMMARYGeneration of kidney organoids from pluripotent stem cells (PSCs) is regarded as a potentially powerful way to study kidney development, disease, and regeneration. Direct differentiation of PSCs towards renal lineages is well studied, however, most of the studies relates to generation of nephron progenitor population from PSCs. Until now, differentiation of PSCs into ureteric bud (UB) progenitor cells demonstrates limited success. Here, we describe a simple, efficient and reproductive protocol to direct differentiation of mouse embryonic stem cells (mESCs) into UB progenitor cells. The mESC–derived UB cells were able to induce nephrogenesis when placed in the interaction with the primary metanephric mesenchyme (pMM). In generated kidney organoids, the embryonic pMM developed nephron structures and the mESC-derived UB cells formed network of collecting ducts, connected with the nephron tubules. Altogether, our studies established an uncomplicated and reproducible platform for kidney disease modelling, drug testing and regenerative medicine applications.


2009 ◽  
Vol 297 (1) ◽  
pp. F210-F217 ◽  
Author(s):  
Wei Wu ◽  
Shinji Kitamura ◽  
David M. Truong ◽  
Timo Rieg ◽  
Volker Vallon ◽  
...  

Deletion of integrin-β1 ( Itgb1) in the kidney collecting system led to progressive renal dysfunction and polyuria. The defect in the concentrating ability of the kidney was concomitant with decreased medullary collecting duct expression of aquaporin-2 and arginine vasopressin receptor 2, while histological examination revealed hypoplastic renal medullary collecting ducts characterized by increased apoptosis, ectasia and cyst formation. In addition, a range of defects from small kidneys with cysts and dilated tubules to bilateral renal agenesis was observed. This was likely due to altered growth and branching morphogenesis of the ureteric bud (the progenitor tissue of the renal collecting system), despite the apparent ability of the ureteric bud-derived cells to induce differentiation of the metanephric mesenchyme. These data not only support a role for Itgb1 in the development of the renal collecting system but also raise the possibility that Itgb1 links morphogenesis to terminal differentiation and ultimately collecting duct function and/or maintenance.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 329 ◽  
Author(s):  
Zenglai Tan ◽  
Aleksandra Rak-Raszewska ◽  
Ilya Skovorodkin ◽  
Seppo J. Vainio

Generation of kidney organoids from pluripotent stem cells (PSCs) is regarded as a potentially powerful way to study kidney development, disease, and regeneration. Direct differentiation of PSCs towards renal lineages is well studied; however, most of the studies relate to generation of nephron progenitor population from PSCs. Until now, differentiation of PSCs into ureteric bud (UB) progenitor cells has had limited success. Here, we describe a simple, efficient, and reproducible protocol to direct differentiation of mouse embryonic stem cells (mESCs) into UB progenitor cells. The mESC-derived UB cells were able to induce nephrogenesis when co-cultured with primary metanephric mesenchyme (pMM). In generated kidney organoids, the embryonic pMM developed nephron structures, and the mESC-derived UB cells formed numerous collecting ducts connected with the nephron tubules. Altogether, our study established an uncomplicated and reproducible platform to generate ureteric bud progenitors from mouse embryonic stem cells.


2000 ◽  
Vol 279 (5) ◽  
pp. F891-F900 ◽  
Author(s):  
Martin Pohl ◽  
Hiroyuki Sakurai ◽  
Kevin T. Bush ◽  
Sanjay K. Nigam

Mammalian kidney development is initiated by the mutual interaction between embryonic metanephric mesenchyme (MM) and the ureteric bud (UB), leading to tightly controlled UB branching morphogenesis. In a three-dimensional cell culture model, which employs MM cell-derived conditioned medium (BSN-CM) to induce UB cell branching morphogenesis in extracellular matrix (ECM) gels (Sakurai H, Barros EJ, Tsukamoto T, Barasch J, and Nigam SK. Proc Natl Acad Sci USA 94: 6279–6284, 1997), branching morphogenesis was inhibited by both chemical agents (ilomastat and 1,10-orthophenanthroline) and a physiological protein factor [tissue inhibitor of metalloproteinases (TIMP)-2], known to act as matrix metalloproteinase (MMP) inhibitors. In addition, UB branching was inhibited in isolated UB culture (Qiao J, Sakurai H, and Nigam SK. Proc Natl Acad Sci USA96: 7330–7335, 1999) by TIMP-2 and ilomastat, suggesting a direct role for MMPs in UB branching. Gelatin zymography and enzymatic measurement of MMP activity revealed that MMPs could originate from at least three different sources: the conditioned medium, the ECM, and the UB cells themselves. In the UB cells, transcription of several MMPs [gelatinase A (MMP2) and B (MMP9), stromelysin (MMP3), MT1-MMP] and TIMPs was altered by BSN-CM and changed as more complex branching structures formed. The ECM appeared to serve as both a reservoir for MMPs and modulated their expression because different ECM compositions altered the total MMP activity as well as specific subsets of MMPs expressed by the UB cells (as determined by zymography and Northern analysis). In the context of UB branching morphogenesis during kidney development, our data suggest a complex model in which soluble factors produced by the MM, in the context of specific ECM components, modulate the expression of specific subsets of MMPs and TIMPs in the UB, which alter as structures develop and the matrix environment changes. This suggests distinct roles for different subsets of MMPs and their inhibitors during different phases of branching morphogenesis.


2017 ◽  
Vol 114 (52) ◽  
pp. E11190-E11198 ◽  
Author(s):  
Frans Schutgens ◽  
Maarten B. Rookmaaker ◽  
Francis Blokzijl ◽  
Ruben van Boxtel ◽  
Robert Vries ◽  
...  

During kidney development, progressively committed progenitor cells give rise to the distinct segments of the nephron, the functional unit of the kidney. Similar segment-committed progenitor cells are thought to be involved in the homeostasis of adult kidney. However, markers for most segment-committed progenitor cells remain to be identified. Here, we evaluate Troy/TNFRSF19 as a segment-committed nephron progenitor cell marker. Troy is expressed in the ureteric bud during embryonic development. During postnatal nephrogenesis, Troy+ cells are present in the cortex and papilla and display an immature tubular phenotype. Tracing of Troy+ cells during nephrogenesis demonstrates that Troy+ cells clonally give rise to tubular structures that persist for up to 2 y after induction. Troy+ cells have a 40-fold higher capacity than Troy− cells to form organoids, which is considered a stem cell property in vitro. In the adult kidney, Troy+ cells are present in the papilla and these cells continue to contribute to collecting duct formation during homeostasis. The number of Troy-derived cells increases after folic acid-induced injury. Our data show that Troy marks a renal stem/progenitor cell population in the developing kidney that in adult kidney contributes to homeostasis, predominantly of the collecting duct, and regeneration.


Sign in / Sign up

Export Citation Format

Share Document