scholarly journals Complexity in SARS-CoV-2 genome data: Price theory of mutant isolates

Author(s):  
Saurav Mandal ◽  
R.K. Sanayaima Singh ◽  
Saurabh Kumar Sharma ◽  
Md. Zubbair Malik ◽  
R.K. Brojen Singh

SARS-CoV-2 is a highly virulent and deadly RNA virus causing the Covid-19 pandemic and several deaths across the world. The pandemic is so fast that any concrete theory of sudden widespread of this disease is still not known. In this work, we studied and analyzed a large number of publicly available SARS-CoV-2 genomes across the world using the multifractal approach. The mutation events in the isolates obey the Markov process and exhibit very high mutational rates, which occur in six specific genes and highest in orf1ab gene, leading to virulent nature. f (α) analysis indicated that the isolates are highly asymmetric (left-skewed), revealing the richness of complexity and dominance by large fluctuations in genome structure organization. The values of Hq and Dq are found to be significantly large, showing heterogeneous genome structure self-organization, strong positive correlation in organizing the isolates, and quite sensitive to fluctuations in and around it. We then present multiple-isolates hosts-virus interaction models, and derived Price equation for the model. The phase plane analysis of the model showed asymptotic stability type bifurcation. The competition among the mutant isolates drives the trade-off of the dominant mutant isolates, otherwise confined to the present hosts.

Database ◽  
2020 ◽  
Vol 2020 ◽  
Author(s):  
Tao Liu ◽  
Yutong Cui ◽  
Xuli Jia ◽  
Jing Zhang ◽  
Ruoran Li ◽  
...  

Abstract Algae are the oldest taxa on Earth, with an evolutionary relationship that spans prokaryotes (Cyanobacteria) and eukaryotes. A long evolutionary history has led to high algal diversity. Their organelle DNAs are characterized by uniparental inheritance and a compact genome structure compared with nuclear genomes; thus, they are efficient molecular tools for the analysis of gene structure, genome structure, organelle function and evolution. However, an integrated organelle genome database for algae, which could enable users to both examine and use relevant data, has not previously been developed. Therefore, to provide an organelle genome platform for algae, we have developed a user-friendly database named Organelle Genome Database for Algae (OGDA, http://ogda.ytu.edu.cn/). OGDA contains organelle genome data either retrieved from several public databases or sequenced in our laboratory (Laboratory of Genetics and Breeding of Marine Organism [MOGBL]), which are continuously updated. The first release of OGDA contains 1055 plastid genomes and 755 mitochondrial genomes. Additionally, a variety of applications have been integrated into this platform to analyze the structural characteristics, collinearity and phylogeny of organellar genomes for algae. This database represents a useful tool for users, enabling the rapid retrieval and analysis of information related to organellar genomes for biological discovery.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Nikolaos C. Kyriakidis ◽  
Andrés López-Cortés ◽  
Eduardo Vásconez González ◽  
Alejandra Barreto Grimaldos ◽  
Esteban Ortiz Prado

AbstractThe new SARS-CoV-2 virus is an RNA virus that belongs to the Coronaviridae family and causes COVID-19 disease. The newly sequenced virus appears to originate in China and rapidly spread throughout the world, becoming a pandemic that, until January 5th, 2021, has caused more than 1,866,000 deaths. Hence, laboratories worldwide are developing an effective vaccine against this disease, which will be essential to reduce morbidity and mortality. Currently, there more than 64 vaccine candidates, most of them aiming to induce neutralizing antibodies against the spike protein (S). These antibodies will prevent uptake through the human ACE-2 receptor, thereby limiting viral entrance. Different vaccine platforms are being used for vaccine development, each one presenting several advantages and disadvantages. Thus far, thirteen vaccine candidates are being tested in Phase 3 clinical trials; therefore, it is closer to receiving approval or authorization for large-scale immunizations.


2021 ◽  
Vol 90 ◽  
pp. 203-204
Author(s):  
C. Rodrigues ◽  
M. Correia ◽  
J. Abrantes ◽  
B. Rodrigues ◽  
J. Nadal

Author(s):  
Ravindra S Waghmare ◽  
Arun S Moharir

For complex reactions the optimal reactor networks can involve several reactors operating at various temperature profiles. The often-reported strategy of optimizing parameters of a heuristically predetermined reactor system (Super-structure Approach) falls short of obtaining true solution due to the presence of multiple local optima. Attainable set method gives Global optimum but requires study of each reaction scheme in depth. Here one such study using phase-plane analysis (instead of convexity based analysis) is reported for finding globally optimal non-isothermal reactor network for van de Vusse reaction (A -> B -> C, 2A -> D, objective is to maximize yield of B). Compared to two-reactor networks proposed earlier, it is found that up to 5 reactors (CSTR with/without bypass of feed, Isothermal PFR, Non-isothermal PFR, CSTR, Isothermal PFR) may be required to get the highest yield of the desired intermediate. The proposed method involves only elementary calculus. The detailed solution algorithm has been described using analogy with highways. Three cases with the values of reaction constants reported in the literature have been solved.


2012 ◽  
Vol 2012 (04) ◽  
pp. P04004 ◽  
Author(s):  
Vandana Yadav ◽  
Rajesh Singh ◽  
Sutapa Mukherji

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Fanfan Chen ◽  
Dingbian Qian ◽  
Xiying Sun ◽  
Yinyin Wu

<p style='text-indent:20px;'>We prove the existence and multiplicity of subharmonic solutions for bounded coupled Hamiltonian systems. The nonlinearities are assumed to satisfy Landesman-Lazer conditions at the zero eigenvalue, and to have some kind of sublinear behavior at infinity. The proof is based on phase plane analysis and a higher dimensional version of the Poincaré-Birkhoff twist theorem by Fonda and Ureña. The results obtained generalize the previous works for scalar second-order differential equations or relativistic equations to higher dimensional systems.</p>


Sign in / Sign up

Export Citation Format

Share Document