scholarly journals Polymorphic mobile element insertions contribute to gene expression and alternative splicing in human tissues

2020 ◽  
Author(s):  
Xiaolong Cao ◽  
Yeting Zhang ◽  
Lindsay M Payer ◽  
Hannah Lords ◽  
Jared P Steranka ◽  
...  

AbstractBackgroundMobile elements are a major source of human structural variants and some mobile elements can regulate gene expression and alternative splicing. However, the impact of polymorphic mobile element insertions (pMEIs) on gene expression and splicing in diverse human tissues has not been thoroughly studied. The multi-tissue gene expression and whole genome sequencing data generated by the Genotype-Tissue Expression (GTEx) project provide a great opportunity to systematic determine pMEIs’ role in gene expression regulation in human tissues.ResultsUsing the GTEx whole genome sequencing data, we identified 20,545 high-quality pMEIs from 639 individuals. We then identified pMEI-associated expression quantitative trait loci (eQTLs) and splicing quantitative trait loci (sQTLs) in 48 tissues by joint analysis of variants including pMEIs, single-nucleotide polymorphisms, and insertions/deletions. pMEIs were predicted to be the potential causal variant for 3,522 of the 30,147 significant eQTLs, and 3,717 of the 21,529 significant sQTLs. The pMEIs associated eQTLs and sQTLs show high level of tissue-specificity, and the pMEIs were enriched in the proximity of affected genes and in regulatory elements. Using reporter assays, we confirmed that several pMEIs associated with eQTLs and sQTLs can alter gene expression levels and isoform proportions.ConclusionOverall, our study shows that pMEIs are associated with thousands of gene expression and splicing variations in different tissues, and pMEIs could have a significant role in regulating tissue-specific gene expression/splicing. Detailed mechanisms for pMEI’s role in gene regulation in different tissues will be an important direction for future human genomic studies.

2021 ◽  
Author(s):  
Saeideh Ashouri ◽  
Jing Hao Wong ◽  
Hidewaki Nakagawa ◽  
Mihoko Shimada ◽  
Katsushi Tokunaga ◽  
...  

Abstract Intermediate-sized insertions are one of the structural variants contributing to genome diversity. However, due to technical difficulties in identifying them, their importance in disease pathogenicity and gene expression regulation remains unclear. We used whole-genome sequencing data of 174 Japanese samples to characterize intermediate-sized insertions using a highly-accurate insertion calling method (IMSindel software and joint-call recovery) and obtained a catalogue of 4,254 insertions. We constructed an imputation panel comprising of insertions and SNVs from all samples, and conducted imputation of intermediate-sized insertions for 82 publicly-available Japanese samples. Imputation accuracy, evaluated using Nanopore long-read sequencing data, was 97%. Subsequent eQTL analysis predicted 128 (~ 3.0%) insertions as causative for gene expression level changes. Enrichment analysis of causal insertions for genome regulatory elements showed significant associations with CTCF-binding sites, super-enhancers, and promoters. Among 17 causal insertions found in the same causal set with GWAS hits, there were insertions associated with changes in expression of cancer-related genes such as BRCA1, ZNF222, and ABCB10. Analysis of insertions sequences revealed that 461 insertions were short tandem duplications frequently found in early replicating regions of genome. Furthermore, comparison of functional importance of intermediate-sized insertions with that of intermediate-sized deletions detected in the same sample set in our previous study showed that insertions were more frequent in genic regions, and proportion of functional candidates was smaller in insertions. Here, we characterize a high-confidence set of intermediate-sized insertions and indicate their importance in gene expression regulation. Our results emphasize the importance of considering intermediate-sized insertions in trait association studies.


Heredity ◽  
2021 ◽  
Author(s):  
Axel Jensen ◽  
Mette Lillie ◽  
Kristofer Bergström ◽  
Per Larsson ◽  
Jacob Höglund

AbstractThe use of genetic markers in the context of conservation is largely being outcompeted by whole-genome data. Comparative studies between the two are sparse, and the knowledge about potential effects of this methodology shift is limited. Here, we used whole-genome sequencing data to assess the genetic status of peripheral populations of the wels catfish (Silurus glanis), and discuss the results in light of a recent microsatellite study of the same populations. The Swedish populations of the wels catfish have suffered from severe declines during the last centuries and persists in only a few isolated water systems. Fragmented populations generally are at greater risk of extinction, for example due to loss of genetic diversity, and may thus require conservation actions. We sequenced individuals from the three remaining native populations (Båven, Emån, and Möckeln) and one reintroduced population of admixed origin (Helge å), and found that genetic diversity was highest in Emån but low overall, with strong differentiation among the populations. No signature of recent inbreeding was found, but a considerable number of short runs of homozygosity were present in all populations, likely linked to historically small population sizes and bottleneck events. Genetic substructure within any of the native populations was at best weak. Individuals from the admixed population Helge å shared most genetic ancestry with the Båven population (72%). Our results are largely in agreement with the microsatellite study, and stresses the need to protect these isolated populations at the northern edge of the distribution of the species.


Sign in / Sign up

Export Citation Format

Share Document