mobile element
Recently Published Documents


TOTAL DOCUMENTS

416
(FIVE YEARS 129)

H-INDEX

47
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Ryuichi Nakano ◽  
Yuki Yamada ◽  
Akiyo Nakano ◽  
Yuki Suzuki ◽  
Kai Saito ◽  
...  

Various carbapenemases have been identified in the Enterobacteriaceae. However, the induction and corresponding regulator genes of carbapenemase NmcA has rarely been detected in the Enterobacter cloacae complex (ECC). The NmcA-positive isolate ECC NR1491 was first detected in Japan in 2013. It was characterized and its induction system elucidated by evaluating its associated regulator genes nmcR, ampD, and ampR. The isolate was highly resistant to all β-lactams except for third generation cephalosporins (3GC). Whole-genome analysis revealed that blaNmcA was located on a novel 29-kb putatively mobile element called EludIMEX-1 inserted into the chromosome. The inducibility of β-lactamase activity by various agents was evaluated. Cefoxitin was confirmed as a strong concentration-independent β-lactamase inducer. In contrast, carbapenems induced β-lactamase in a concentration-dependent manner. All selected 3GC-mutants harboring substitutions on ampD (as ampR and nmcR were unchanged) were highly resistant to 3GC. The ampD mutant strain NR3901 presented with a 700 × increase in β-lactamase activity with or without induction. Similar upregulation was also observed for ampC and nmcA. NR1491 (pKU412) was obtained by transforming the ampR mutant (135Asn) clone plasmid whose expression increased by ∼100×. Like NR3901, it was highly resistant to 3GC. Overexpression of ampC, rather than nmcA, may have accounted for the higher MIC in NR1491. The ampR mutant repressed nmcA despite induction and it remains unclear how it stimulates nmcA transcription via induction. Future experiments should analyze the roles of nmcR mutant strains.


2022 ◽  
Author(s):  
Feng Wang ◽  
Han Zhang ◽  
Tong Xu ◽  
Youchun Hu ◽  
Yugang Jiang

Abstract Gut microbiota bears adaptive potential to different environments, but little is known regarding its responses to acute high-altitude exposure. This study aimed to evaluate the microbial changes after acute exposure to simulated high-altitude hypoxia. C57BL/6J mice were divided into hypoxia and normoxia groups. The hypoxia group was exposed to a simulated altitude of 5500 m for 24 hours above sea level. The normoxia group was maintained in low-altitude of 10 m above sea level. Colonic microbiota was analyzed using 16S rRNA V4 gene sequencing. Compared with the normoxia group, shannon, simpson and Akkermansia were significantly increased, while Firmicutes to Bacteroidetes ratio and Bifidobacterium were significantly decreased in the hypoxia group. The hypoxia group exhibited lower mobile element containing and higher potentially pathogenic and stress tolerant phenotypes than those in the normoxia group. Functional analysis indicated that environmental information processing was significantly lower, metabolism, cellular processes and organismal systems were significantly higher in the hypoxia group than those in the normoxia group. In conclusion, acute exposure to simulated high-altitude hypoxia alters gut microbiota diversity and composition, which may provide a potential target to alleviate acute high-altitude diseases.


Author(s):  
Zexian Cui ◽  
Qing Yang ◽  
Xiaoping Xia ◽  
Rui Wang ◽  
Magali Bonifacie ◽  
...  

Chlorine is a redox-sensitive and fluid-mobile element, and is involved in many geological processes. Apatite, a ubiquitous accessory mineral in mafic to felsic rocks, is the most-studied mineral in chlorine...


Author(s):  
Monal Depani ◽  
James Thornton

AbstractThe unique requirements of reconstructing cheek defects, often with its proximity to the mobile elements of the face including the lip and the eyelid, have been met very handily with the directed and thoughtful use of biologic wound healing agents. One of the key advantages of these agents is their ability to provide coverage in patients with multiple comorbid conditions for the mobile elements of the cheek where the cervicofacial advancement flap is contraindicated due to its anesthetic requirement. The biologic agents are also highly successful coverage options for patients who have limited skin laxity to provide for proper skin closure using the standard cheek closure techniques with local flaps. In addition, these agents provide an ability to provide stable wound closure with minimal wound care while waiting for the excisional biopsy results to be finalized. This article describes the unique indications for biologic wound agents, including preservation of lip and eyelid mobile element anatomy without retraction from a local flap, which has not been previously described.


2021 ◽  
Vol 12 (1) ◽  
pp. 247
Author(s):  
Ourania Tsilomitrou ◽  
Anthony Tzes

This article is concerned with collecting stored sensor data from a static Wireless Sensor Network utilizing a group of mobile robots that act as data mules. In this scenario, the static sensor nodes’ locations are known a priori, and the overall optimization problem is formulated as a variation of the Traveling Salesman Subset-tour Problem (TSSP). The constraints that are taken into account include: (a) the pairwise distance between static nodes, (b) the maximum time interval between consecutive visits of each static node, (c) the service time that is required for the collection of the sensor data from the mobile element that visits this sensor node, and (d) the energy efficiency for the mobile nodes. The optimal mobile robot paths are computed using an enhanced Mobile Element Scheduling scheme. This scheme extracts the sequential paths of the mobile elements in an attempt to eliminate any sensor data loss.


2021 ◽  
Author(s):  
Sherif Abouelhadid ◽  
Elizabeth Atkins ◽  
Emily Kay ◽  
Ian Passmore ◽  
Simon J North ◽  
...  

Antimicrobial resistance (AMR) is threatening the lives of millions worldwide. Antibiotics which once saved countless lives, are now failing, ushering in vaccines development as a current global imperative. Conjugate vaccines produced either by chemical synthesis or biologically in Escherichia coli cells, have been demonstrated to be safe and efficacious in protection against several deadly bacterial diseases. However, conjugate vaccines assembly and production have several shortcomings which hinders their wider availability. Here, we developed a tool, Mobile-element Assisted Glycoconjugation by Insertion on Chromosome, MAGIC, a novel method that overcomes the limitations of the current conjugate vaccine design method(s). We demonstrate at least 2-fold increase in glycoconjugate yield via MAGIC when compared to conventional bioconjugate method(s). Furthermore, the modularity of the MAGIC platform also allowed us to perform glycoengineering in genetically intractable bacterial species other than E. coli. The MAGIC system promises a rapid, robust and versatile method to develop vaccines against bacteria, especially AMR pathogens, and could be applied for biopreparedness.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kai Hu ◽  
Ping Liang

Mesial temporal lobe epilepsy (MTLE) is the most common form of epilepsy, and temporal lobe epilepsy patients with hippocampal sclerosis (TLE-HS) show worse drug treatment effects and prognosis. TLE has been shown to have a genetic component, but its genetic research has been mostly limited to coding sequences of genes with known association to epilepsy. Representing a major component of the genome, mobile elements (MEs) are believed to contribute to the genetic etiology of epilepsy despite limited research. We analyzed publicly available human RNA-seq-based transcriptome data to determine the role of mobile elements in epilepsy by performing de novo transcriptome assembly, followed by identification of spliced gene transcripts containing mobile element (ME) sequences (ME-transcripts), to compare their frequency across different sample groups. Significantly higher levels of ME-transcripts in hippocampal tissues of epileptic patients, particularly in TLE-HS, were observed. Among ME classes, short interspersed nuclear elements (SINEs) were shown to be the most frequent contributor to ME-transcripts, followed by long interspersed nuclear elements (LINEs) and DNA transposons. These ME sequences almost in all cases represent older MEs normally located in the intron sequences. For protein coding genes, ME sequences were mostly found in the 3′-UTR regions, with a significant portion also in the coding sequences (CDSs), leading to reading frame disruption. Genes associated with ME-transcripts showed enrichment for the mRNA splicing process and an apparent bias in epileptic transcriptomes toward neural- and epilepsy-associated genes. The findings of this study suggest that abnormal splicing involving MEs, leading to loss of functions in critical genes, plays a role in epilepsy, particularly in TLE-HS, thus providing a novel insight into the molecular mechanisms underlying epileptogenesis.


2021 ◽  
Author(s):  
Nelson T. Chuang ◽  
Eugene J. Gardner ◽  
Diane M. Terry ◽  
Jonathan Crabtree ◽  
Anup A. Mahurkar ◽  
...  

Several large-scale Illumina whole-genome sequencing (WGS) and whole-exome sequencing (WES) projects have emerged recently that have provided exceptional opportunities to discover mobile element insertions (MEIs) and study the impact of these MEIs on human genomes. However, these projects also have presented major challenges with respect to the scalability and computational costs associated with performing MEI discovery on tens or even hundreds of thousands of samples. To meet these challenges, we have developed a more efficient and scalable version of our mobile element locator tool (MELT) called CloudMELT. We then used MELT and CloudMELT to perform MEI discovery in 57,919 human genomes and exomes, leading to the discovery of 104,350 nonredundant MEIs. We leveraged this collection (1) to examine potentially active L1 source elements that drive the mobilization of new Alu, L1, and SVA MEIs in humans; (2) to examine the population distributions and subfamilies of these MEIs; and (3) to examine the mutagenesis of GENCODE genes, ENCODE-annotated features, and disease genes by these MEIs. Our study provides new insights on the L1 source elements that drive MEI mutagenesis and brings forth a better understanding of how this mutagenesis impacts human genomes.


2021 ◽  
Author(s):  
Evgeniya N. Andreyeva ◽  
Alexander V. Emelyanov ◽  
Markus Nevil ◽  
Lu Sun ◽  
Elena Vershilova ◽  
...  

AbstractThe asynchronous timing of replication of different chromosome domains is essential for eukaryotic genome stability, but the mechanisms establishing replication timing programs remain incompletely understood. Drosophila SNF2-related factor SUUR imparts under- replication (UR) of late-replicating intercalary heterochromatin (IH) domains in polytene chromosomes1. SUUR negatively regulates DNA replication fork progression across IH; however, its mechanism of action remains obscure2, 3. Here we developed a novel method termed MS-Enabled Rapid protein Complex Identification (MERCI) to isolate a stable stoichiometric native complex SUMM4 that comprises SUUR and a chromatin boundary protein Mod(Mdg4)- 67.24, 5. In vitro, Mod(Mdg4) stimulates the ATPase activity of SUUR, although neither SUUR nor SUMM4 can remodel nucleosomes. Mod(Mdg4)-67.2 and SUUR distribution patterns in vivo partially overlap, and Mod(Mdg4) is required for a normal spatiotemporal distribution of SUUR in chromosomes. SUUR and Mod(Mdg4)-67.2 mediate insulator activities of the gypsy mobile element that disrupt enhancer-promoter interactions and establish euchromatin- heterochromatin barriers in the genome. Furthermore, mutations of SuUR or mod(mdg4) reverse the locus-specific UR. These findings reveal that DNA replication can be delayed by a chromatin barrier and thus, uncover a critical role for architectural proteins in replication timing control. They also provide a biochemical link between ATP-dependent motor factors and the activity of insulators in regulation of gene expression and chromatin partitioning.


Sign in / Sign up

Export Citation Format

Share Document