scholarly journals Astrocytic glutamate uptake coordinates experience-dependent, eye-specific refinement in developing visual cortex

2020 ◽  
Author(s):  
Grayson Sipe ◽  
Jeremy Petravicz ◽  
Rajeev Rikhye ◽  
Rodrigo Garcia ◽  
Nikolaos Mellios ◽  
...  

ABSTRACTThe uptake of glutamate by astrocytes actively shapes synaptic transmission, however its role in the development and plasticity of neuronal circuits remains poorly understood. The astrocytic glutamate transporter, GLT1 is the predominant source of glutamate clearance in the adult mouse cortex. Here, we examined the structural and functional development of the visual cortex in GLT1 heterozygous (HET) mice using two-photon microscopy, immunohistochemistry and slice electrophysiology. We find that though eye-specific thalamic axonal segregation is intact, binocular refinement in the primary visual cortex is disrupted. Eye-specific responses to visual stimuli in GLT1 HET mice show altered binocular matching, with abnormally high responses to ipsilateral compared to contralateral eye stimulation and a greater mismatch between preferred orientation selectivity of ipsilateral and contralateral eye responses. Furthermore, the balance of excitation and inhibition in cortical circuits is dysregulated with an increase in somatostatin positive interneurons, decrease in parvalbumin positive interneurons, and increase in dendritic spine density in the basal dendrites of layer 2/3 excitatory neurons. Monocular deprivation induces atypical ocular dominance plasticity in GLT1 HET mice, with an unusual depression of ipsilateral open eye responses; however, this change in ipsilateral responses correlates well with an upregulation of GLT1 protein following monocular deprivation. These results demonstrate that a key function of astrocytic GLT1 function during development is the experience-dependent refinement of ipsilateral eye inputs relative to contralateral eye inputs in visual cortex.SIGNIFICANCEWe show that astrocytic glutamate uptake via the transporter GLT1 is necessary for activity-dependent regulation of cortical inputs. Dysregulation of GLT1 expression and function leads to a disruption of binocular refinement and matching in visual cortex. Inputs from the ipsilateral eye are stronger, and monocular deprivation, which upregulates GLT1 expression in a homeostatic fashion, causes a paradoxical reduction of ipsilateral, non-deprived eye, responses. These results provide new evidence for the importance of glutamate transport in cortical development, function, and plasticity.

2002 ◽  
Vol 88 (4) ◽  
pp. 1933-1940 ◽  
Author(s):  
Chris J. Beaver ◽  
Quentin S. Fischer ◽  
Qinghua Ji ◽  
Nigel W. Daw

We have previously shown that the protein kinase A (PKA) inhibitor, 8-chloroadenosine-3′,5′–monophosphorothioate (Rp-8-Cl-cAMPS), abolishes ocular dominance plasticity in the cat visual cortex. Here we investigate the effect of this inhibitor on orientation selectivity. The inhibitor reduces orientation selectivity in monocularly deprived animals but not in normal animals. In other words, PKA inhibitors by themselves do not affect orientation selectivity, nor does monocular deprivation by itself, but monocular deprivation in combination with a PKA inhibitor does affect orientation selectivity. This result is found for the receptive fields in both deprived and nondeprived eyes. Although there is a tendency for the orientation selectivity in the nondeprived eye to be higher than the orientation selectivity in the deprived eye, the orientation selectivity in both eyes is considerably less than normal. The result is striking in animals at 4 wk of age. The effect of the monocular deprivation on orientation selectivity is reduced at 6 wk of age and absent at 9 wk of age, while the effect on ocular dominance shifts is less changed in agreement with previous results showing that the critical period for orientation/direction selectivity ends earlier than the critical period for ocular dominance. We conclude that closure of one eye in combination with inhibition of PKA reduces orientation selectivity during the period that orientation selectivity is still mutable and that the reduction in orientation selectivity is transferred to the nondeprived eye.


2015 ◽  
Vol 112 (41) ◽  
pp. 12852-12857 ◽  
Author(s):  
Michael S. Sidorov ◽  
Eitan S. Kaplan ◽  
Emily K. Osterweil ◽  
Lothar Lindemann ◽  
Mark F. Bear

A feature of early postnatal neocortical development is a transient peak in signaling via metabotropic glutamate receptor 5 (mGluR5). In visual cortex, this change coincides with increased sensitivity of excitatory synapses to monocular deprivation (MD). However, loss of visual responsiveness after MD occurs via mechanisms revealed by the study of long-term depression (LTD) of synaptic transmission, which in layer 4 is induced by acute activation of NMDA receptors (NMDARs) rather than mGluR5. Here we report that chronic postnatal down-regulation of mGluR5 signaling produces coordinated impairments in both NMDAR-dependent LTD in vitro and ocular dominance plasticity in vivo. The data suggest that ongoing mGluR5 signaling during a critical period of postnatal development establishes the biochemical conditions that are permissive for activity-dependent sculpting of excitatory synapses via the mechanism of NMDAR-dependent LTD.


2017 ◽  
Author(s):  
Juliane Jäpel ◽  
Mark Hübener ◽  
Tobias Bonhoeffer ◽  
Tobias Rose

AbstractExperience-dependent plasticity in the mature visual system is considered exclusively cortical. Using chronic two-photon Ca2+ imaging, we found evidence against this tenet: dLGN cells showed robust ocular dominance shifts after monocular deprivation. Most, but not all responses of dLGN cell boutons in binocular visual cortex were monocular during baseline. Following deprivation, however, deprived-eye dominated boutons became responsive to the non-deprived eye. Thus, plasticity of dLGN neurons contributes to cortical ocular dominance shifts.


2021 ◽  
Author(s):  
Jan W Kurzawski ◽  
Claudia Lunghi ◽  
Laura Biagi ◽  
Michela Tosetti ◽  
Maria Concetta Morrone ◽  
...  

While there is evidence that the visual cortex retains a potential for plasticity in adulthood, less is known about the subcortical stages of visual processing. Here we asked whether short-term ocular dominance plasticity affects the visual thalamus. We addressed this question in normally sighted adult humans, using ultra-high field (7T) magnetic resonance imaging combined with the paradigm of short-term monocular deprivation. With this approach, we previously demonstrated transient shifts of perceptual eye dominance and ocular dominance in visual cortex (Binda et al., 2018). Here we report evidence for short-term plasticity in the ventral division of the pulvinar (vPulv), where the deprived eye representation was enhanced over the non-deprived eye. This pulvinar plasticity effect was similar as previously seen in visual cortex and it was correlated with the ocular dominance shift measured behaviorally. In contrast, there was no short-term plasticity effect in Lateral Geniculate Nucleus (LGN), where results were reliably different from vPulv, despite their spatial proximity. We conclude that the visual thalamus retains potential for short-term plasticity in adulthood; the plasticity effect differs across thalamic subregions, possibly reflecting differences in their cortical connectivity.


2001 ◽  
Vol 18 (5) ◽  
pp. 811-820 ◽  
Author(s):  
CHRISTOPHER J. BEAVER ◽  
QINGHUA JI ◽  
NIGEL W. DAW

We compared the effect of 2 days of monocular vision on the ocular dominance of cells in the visual cortex of light-reared kittens with the effect in dark-reared kittens at 6, 9, and 14 weeks of age, and analyzed the results by layer. The size of the ocular-dominance shift declined with age in all layers in light-reared animals. There was not a large change in the ocular-dominance shift with age in dark-reared animals in any layer, suggesting that dark rearing largely keeps the cortex in the immature 6-week state until 14 weeks or longer, although there was a slight decrease in layers II, III, and IV, and a slight increase in layers V and VI. At 14 weeks, the difference between light- and dark-reared animals was smallest in layer IV, larger in layers II/III, and largest in layers V/VI, suggesting that dark rearing has a large effect on intracortical synapses and a small effect on geniculocortical synapses. There was a significant ocular-dominance shift in layer IV at 14 weeks of age in both light- animals and dark-reared animals, showing that the critical period for ocular-dominance plasticity is not ended at this age. While the ocular-dominance shift after 26 h of monocular deprivation in 6-week animals was similar in light- and dark-reared animals, after 14 h it was smaller in dark-reared animals, showing that ocular-dominance changes occur more slowly in dark-reared animals at this age, in agreement with Mower (1991). Increases in selectivity for axis of movement after 26 h of monocular vision were seen in dark-reared animals at 6 weeks of age, but not at 9 or 14 weeks of age, showing that the critical period for axial selectivity ends earlier than the critical period for ocular dominance in dark-reared animals, as it does in light-reared animals.


2017 ◽  
Vol 372 (1715) ◽  
pp. 20160159 ◽  
Author(s):  
Irina Erchova ◽  
Asta Vasalauskaite ◽  
Valentina Longo ◽  
Frank Sengpiel

Dark rearing is known to delay the time course of the critical period for ocular dominance plasticity in the visual cortex. Recent evidence suggests that a period of dark exposure (DE) may enhance or reinstate plasticity even after closure of the critical period, mediated through modification of the excitatory–inhibitory balance and/or removal of structural brakes on plasticity. Here, we investigated the effects of a week of DE on the recovery from a month of monocular deprivation (MD) in the primary visual cortex (V1) of juvenile mice. Optical imaging of intrinsic signals revealed that ocular dominance in V1 of mice that had received DE recovered slightly more quickly than of mice that had not, but the level of recovery after three weeks was similar in both groups. Two-photon calcium imaging showed no significant difference in the recovery of orientation selectivity of excitatory neurons between the two groups. Parvalbumin-positive (PV+) interneurons exhibited a smaller ocular dominance shift during MD but again no differences in subsequent recovery. The percentage of PV+ cells surrounded by perineuronal nets, a structural brake on plasticity, was lower in mice with than those without DE. Overall, DE causes a modest enhancement of mouse visual cortex plasticity. This article is part of the themed issue ‘Integrating Hebbian and homeostatic plasticity’.


1990 ◽  
Vol 4 (6) ◽  
pp. 585-593 ◽  
Author(s):  
Helen McIntosh ◽  
Nigel Daw ◽  
David Parkinson

AbstractGAP-43 levels have been determined by immunoassay in cat visual cortex during postnatal development to test the idea that GAP-43 expression could be related to the duration of the critical period for plasticity. For comparison, GAP-43 levels have also been assayed in primary motor cortex, primary somatosensory cortex, and cerebellum at each age. GAP-43 levels were high in all regions at 5 d (with concentrations ranging from 7−10 ng;/μg protein) and then declined 60−80% by 60 d of age. After 60 d of age, GAP-43 concentrations in each region continued a slow decline to adult values, which ranged from 0.5−2 ng/μg protein. To test for the involvement of GAP-43 in ocular dominance plasticity during the critical period, the effect of visual deprivation on GAP-43 levels was investigated. Monocular deprivation for 2−7 d, ending at either 27 or 35 d of age, had no effect on total membrane levels of GAP-43. The concentrations of membrane-associated GAP-43 prior to 40 d of age correlate with events that occur during postnatal development of the cat visual cortex. However, the slow decline in membrane-associated GAP-43 levels after 40 d of age may be an index of relative plasticity remaining after the peak of the critical period.


2018 ◽  
Author(s):  
Manuel Teichert ◽  
Marcel Isstas ◽  
Franziska Wieske ◽  
Christine Winter ◽  
Jürgen Bolz

AbstractIn juvenile and “young adult” mice monocular deprivation (MD) shifts the ocular dominance (OD) of binocular neurons in the primary visual cortex (V1) away from the deprived eye. However, OD plasticity is completely absent in mice older than 110 days, but can be reactivated by treatments which decrease GABA levels in V1. Typically, these OD shifts can be prevented by increasing GABAergic transmission with diazepam. We could recently demonstrate that both bilateral whisker and auditory deprivation (WD, AD), can also restore OD plasticity in mice older than 110 days, since MD for 7 days in WD mice caused a potentiation of V1 input through the ipsilateral (open) eye, the characteristic feature of OD plasticity of “young adult” mice. Here we examined whether WD for 7 days also decreases GABA levels. For this, we performed post mortem HPLC analysis of V1 tissue. Indeed, we found that WD significantly decreased GABA levels in V1. Surprisingly, enhancing GABAergic inhibition by diazepam did not abolish OD shifts in WD mice, as revealed by repeated intrinsic signal imaging. On the contrary, this treatment led to a depression of V1 input through the previously closed contralateral eye, the characteristic signature of OD plasticity in juvenile mice during the critical period. Interestingly, the same result was obtained after AD. Taken together, these results suggest that cross-modally restored OD plasticity does not only depend on reduction of GABA levels in V1, but also requires other, so far unknown mechanisms.


2006 ◽  
Vol 95 (5) ◽  
pp. 2947-2950 ◽  
Author(s):  
Cynthia D. Rittenhouse ◽  
Beth A. Siegler ◽  
Courtney A. Voelker ◽  
Harel Z. Shouval ◽  
Michael A. Paradiso ◽  
...  

Although it has been known for decades that monocular deprivation shifts ocular dominance in kitten striate cortex, uncertainty persists about the adequate stimulus for deprivation-induced losses of cortical responsiveness. In the current study we compared the effects of 2 days of lid closure and 2 days of monocular blur using an overcorrecting contact lens. Our finding of comparable ocular dominance shifts in visual cortex indicates that deprived-eye response depression is not a result of reduced retinal illumination. The quality rather than the quantity of retinal illumination is the key factor for ocular dominance plasticity. These data have implications for both the mechanism and treatment of amblyopia.


Sign in / Sign up

Export Citation Format

Share Document