scholarly journals Characterization of the Novel Mitochondrial Genome Segregation Factor TAP110 in Trypanosoma brucei

Author(s):  
Simona Amodeo ◽  
Ana Kalichava ◽  
Albert Fradera-Sola ◽  
Eloïse Bertiaux-Lequoy ◽  
Paul Guichard ◽  
...  

AbstractProper mitochondrial genome inheritance is key for eukaryotic cell survival, however little is known about the molecular mechanism controlling this process. Trypanosoma brucei, a protozoan parasite, contains a singular mitochondrial genome aka kinetoplast DNA (kDNA). kDNA segregation requires anchoring of the genome to the basal body via the tripartite attachment complex (TAC). Several components of the TAC as well as their assembly have been described, it however remains elusive how the TAC connects to the kDNA. Here, we characterize the TAC associated protein TAP110 and for the first time use ultrastructure expansion microscopy in trypanosomes to reveal that TAP110 is the currently most proximal kDNA segregation factor. The kDNA proximal positioning is also supported by RNAi depletion of TAC102, which leads to loss of TAP110 at the TAC. Overexpression of TAP110 leads to expression level changes of several mitochondrial proteins and a delay in the separation of the replicated kDNA networks. In contrast to other kDNA segregation factors TAP110 remains only partially attached to the flagellum after DNAse and detergent treatment and can only be solubilized in dyskinetoplastic cells, suggesting that interaction with the kDNA might be important for stability of the TAC association. Furthermore, we demonstrate that the TAC, but not the kDNA, is required for correct TAP110 localization in vivo and suggest that TAP110 might interact with other proteins to form a >669 kDa complex.Summary StatementTAP110 is a novel mitochondrial genome segregation factor in Trypanosoma brucei that associates with the previously described TAC component TAC102. Ultrastructure expansion microscopy reveals its proximal position to the kDNA.

2021 ◽  
pp. jcs.254300
Author(s):  
Simona Amodeo ◽  
Ana Kalichava ◽  
Albert Fradera-Sola ◽  
Eloïse Bertiaux-Lequoy ◽  
Paul Guichard ◽  
...  

Proper mitochondrial genome inheritance is important for eukaryotic cell survival. Trypanosoma brucei, a protozoan parasite, contains a singular mitochondrial genome, the kDNA. The kDNA is anchored to the basal body via the tripartite attachment complex (TAC) to ensure proper segregation. Several components of the TAC have been described. However, the connection of the TAC to the kDNA remains elusive. Here, we characterize the TAC associated protein TAP110. Depletion as well as overexpression of TAP110 leads to a delay in the separation of the replicated kDNA networks. Proteome analysis after TAP110 overexpression identified several kDNA associated proteins including a TEX-like protein that dually localizes to the nucleus and the kDNA potentially linking replication/segregation in the two compartments. The assembly of TAP110 into the TAC region seems to require the TAC but not the kDNA itself, however once TAP110 has been assembled it also interacts with the kDNA. Finally, for the first time we use ultrastructure expansion microscopy in trypanosomes to reveal the precise position of TAP110 between TAC102 and the kDNA, showcasing the potential of this approach.


2017 ◽  
Author(s):  
Simona Amodeo ◽  
Martin Jakob ◽  
Torsten Ochsenreiter

AbstractThe unicellular parasite Trypanosoma brucei harbors one individual mitochondrial organelle with a singular genome the kinetoplast DNA or kDNA. The kDNA largely consists of concatenated minicircles and a few maxicircles that are also interlocked into the kDNA disc. More than 30 proteins involved in kDNA replication have been described, however several mechanistic questions are only poorly understood. Here, we describe and characterize MiRF172, a novel mitochondrial genome replication factor, which is essential for proper cell growth and kDNA maintenance. Using super-resolution microscopy, we localize MiRF172 to the antipodal sites of the kDNA. We demonstrate that depletion of MiRF172 leads to continuous loss of mini- and maxicircles during the cell division cycle. Detailed analysis suggests that MiRF172 is likely involved in the reattachment of replicated minicircles to the kDNA disc. Furthermore, we provide evidence that the localization of the replication factor MiRF172 not only depends on the kDNA itself, but also on the mitochondrial genome segregation machinery suggesting a tight interaction between the two essential entities.Summary StatementMiRF172 is a novel protein involved in the reattachment of replicated minicircles in Trypanosoma brucei, which requires the mitochondrial segregation machinery for proper localization.


2013 ◽  
Vol 8 (11) ◽  
pp. 1934578X1300801 ◽  
Author(s):  
Harish C. Upadhyay ◽  
Brijesh S. Sisodia ◽  
Harveer S. Cheema ◽  
Jyoti Agrawal ◽  
Anirban Pal ◽  
...  

The roots, leaves and stems of Christia vespertilionis were separately and successively extracted with methanol and aqueous-methanol (1:4, v/v) and were evaluated in vitro for their antiplasmodial potential against Plasmodium falciparum NF-54. The aqueous-methanolic stem (AS) extract was the most active (IC50 7.5 μg/mL) followed by the methanolic leaf (ML) extract (IC50 32.0 μg/mL). The in vivo antimalarial activity of the combined plant extract of C. vespertilionis was also assessed in P. berghei infected mice, which showed 87.8% suppression of parasitaemia as compared with complete suppression by chloroquine on day 8. Finally, detailed chemical investigation of C. vespertilionis resulted in the isolation and characterization of fifteen compounds (1–15), of which two (1 and 4) are being reported for the first time from nature. The novel compound 1 possesses potent antiplasmodial activity (IC50 = 9.0 μg/mL).


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 854
Author(s):  
Ahmad Hivechi ◽  
Peiman Brouki Milan ◽  
Khashayar Modabberi ◽  
Moein Amoupour ◽  
Kaveh Ebrahimzadeh ◽  
...  

Loss of skin integrity can lead to serious problems and even death. In this study, for the first time, the effect of exopolysaccharide (EPS) produced by cold-adapted yeast R. mucilaginosa sp. GUMS16 on a full-thickness wound in rats was evaluated. The GUMS16 strain’s EPS was precipitated by adding cold ethanol and then lyophilized. Afterward, the EPS with polycaprolactone (PCL) and gelatin was fabricated into nanofibers with two single-needle and double-needle procedures. The rats’ full-thickness wounds were treated with nanofibers and Hematoxylin and eosin (H&E) and Masson’s Trichrome staining was done for studying the wound healing in rats. Obtained results from SEM, DLS, FTIR, and TGA showed that EPS has a carbohydrate chemical structure with an average diameter of 40 nm. Cell viability assessments showed that the 2% EPS loaded sample exhibits the highest cell activity. Moreover, in vivo implantation of nanofiber webs on the full-thickness wound on rat models displayed a faster healing rate when EPS was loaded into a nanofiber. These results suggest that the produced EPS can be used for skin tissue engineering applications.


2004 ◽  
Vol 48 (4) ◽  
pp. 1374-1378 ◽  
Author(s):  
Alejandro Beceiro ◽  
Lourdes Dominguez ◽  
Anna Ribera ◽  
Jordi Vila ◽  
Francisca Molina ◽  
...  

ABSTRACT A presumptive chromosomal cephalosporinase (pI, 9.0) from a clinical strain of Acinetobacter genomic species 3 (AG3) is reported. The nucleotide sequence of this β-lactamase shows for the first time the gene encoding an AmpC enzyme in AG3. In addition, the biochemical properties of the novel AG3 AmpC β-lactamase are reported


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Angela Tino ◽  
Alfredo Ambrosone ◽  
Lucia Mattera ◽  
Valentina Marchesano ◽  
Andrei Susha ◽  
...  

In the emerging area of nanotechnology, a key issue is related to the potential impacts of the novel nanomaterials on the environment and human health, so that this technology can be used with minimal risk. Specifically designed to combine on a single structure multipurpose tags and properties, smart nanomaterials need a comprehensive characterization of both chemicophysical properties and adequate toxicological evaluation, which is a challenging endeavour; thein vitrotoxicity assays that are often employed for nanotoxicity assessments do not accurately predictin vivoresponse. To overcome these limitations and to evaluate toxicity characteristics of cadmium telluride quantum dots in relation to surface coatings, we have employed the freshwater polypHydra vulgarisas a model system. We assessedin vivoacute and sublethal toxicity by scoring for alteration of morphological traits, population growth rates, and influence on the regenerative capabilities providing new investigation clues for nanotoxicology purposes.


2005 ◽  
Vol 391 (2) ◽  
pp. 185-190 ◽  
Author(s):  
Renu Wadhwa ◽  
Syuichi Takano ◽  
Kamaljit Kaur ◽  
Satoshi Aida ◽  
Tomoko Yaguchi ◽  
...  

Mortalin/mtHsp70 (mitochondrial Hsp70) and HSP60 (heat-shock protein 60) are heat-shock proteins that reside in multiple subcellular compartments, with mitochondria being the predominant one. In the present study, we demonstrate that the two proteins interact both in vivo and in vitro, and that the N-terminal region of mortalin is involved in these interactions. Suppression of HSP60 expression by shRNA (short hairpin RNA) plasmids caused the growth arrest of cancer cells similar to that obtained by suppression of mortalin expression by ribozymes. An overexpression of mortalin, but not of HSP60, extended the in vitro lifespan of normal fibroblasts (TIG-1). Taken together, this study for the first time delineates: (i) molecular interactions of HSP60 with mortalin; (ii) their co- and exclusive localizations in vivo; (iii) their involvement in tumorigenesis; and (iv) their functional distinction in pathways involved in senescence.


Sign in / Sign up

Export Citation Format

Share Document